(3.236.222.124) 您好!臺灣時間:2021/05/13 21:00
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:舒小恩
研究生(外文):Hsiao-En Shu
論文名稱:進氣道角度對內燃機引擎汽缸內流場影響之研究
論文名稱(外文):A Study of the Effect of the Angle of Intake Port on the Flow Field in an Internal Combustion Engine
指導教授:鄧治東鄧治東引用關係
指導教授(外文):Jyh-Tong Teng
學位類別:碩士
校院名稱:中原大學
系所名稱:機械工程研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2001
畢業學年度:89
語文別:中文
論文頁數:101
中文關鍵詞:流場KIVA-3V程式內燃機引擎進氣道角度
外文關鍵詞:flow fieldinternal combustion engineintake port anglesKIVA -3V code
相關次數:
  • 被引用被引用:4
  • 點閱點閱:240
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:4
內燃機引擎目前仍是汽、機車動力的主要來源,因此引擎性能係汽、機車設計上所著重的關鍵;而汽缸內的熱流現象對引擎性能的影響至深且鉅。由於汽缸內的燃燒性能主要決定於油氣的混合過程,同時點火前汽缸內的流場結構對於火焰的傳遞及進排氣具重要的影響性;故許多學者致力於研究引擎汽缸內純流場的分析。

研究內燃機流場現象主要可分為實驗與數值模擬兩種方式,實驗雖可量測引擎實際的表現,但多半只能量測到某些特定區間的數據,難以看到完整的流場結構,此外量測實驗設備異常昂貴,加上實驗所需的時間和人力實非一般研究機構所能負擔。隨著近年來電子計算機的快速發展,應用計算流體力學的數值方法可在有限的時間內獲取整體流場現象的模擬,並可針對實際需要以調整引擎操作等相關參數而進行引擎運轉性能的預測。
本研究採用KIVA-3V計算流體力學程式針對一實際引擎以模擬其不同進氣道角度,對產生在汽缸內的流場加以分析、比較;研究中所採用的紊流模式為紊流強度較強之Renormalization Group ( RNG ) 紊流模式。結果顯示,改變進排氣閥的傾斜角度對進氣期間的流場變化有很明顯的影響,其中以垂直閥 (進排氣閥傾斜0度) 所得的 Y軸向(Y方向係垂直於將汽缸對分為二平面的方向)滾流強度、渦漩比、紊流強度、紊流動能等流場強度為最強;若以流體經活塞壓縮後的流場特性進行探討,所得結果顯示壓縮衝程對汽缸內流場的效應是不容忽視的;因此由進氣到壓縮過程結束的整體流場現象,才是影響引擎點火前的油氣混合程度與燃燒品質的關鍵。
Internal combustion (I. C.) engines are still the primary power sources for cars and motor cycles; thus, the performance of those engines is one of the key items studied in their design. It is noted that the thermofluid phenomena play an essential role in the performance of an engine. In addition, the combustion effectiveness inside a cylinder depends on the mixing of the fuel-air mixture. Furthermore, the structure of the fluid flow field immediately before combustion has a major impact on the intake and exhaust of gases and the propagation of flame. As a result, many researchers performed the studies on the flow fields in various engines.
The study of the flow fields in an I. C. engine has two approaches — the experimental technique and the numerical simulation. Even though the former can measure some of the parameters of the engine under study, the measurement can only focus on a specific area of the engine; it can not measure the overall flow field occurring inside the engine. Besides, the experimental apparatus is expensive to set up and the resources needed for time and manpower is tremendous and is prohibitively high for most of the research organizations. In recent years, within a limited amount of time for computation and using computational fluid dynamics (CFD) methodologies for numerical calculations, the high-speed computers have the capabilities to simulate the overall behavior of the flow field in the engine. They can also predict the performance of an engine by adjusting the engine operational parameters.
This study used KIVA-3V CFD methodology to analyze the flow field occurring in an engine — with varying angles of the intake port. The turbulence model used is the Renormalization Group (RNG) k-e turbulence model which provides a relatively higher turbulence than the Standard k-e turbulence model. The results of this study indicate that changing the angle of the intake port has a profound effect on the flow field during the intake stroke of the engine cycle. For the case with the intake-exhaust valves canted at zero degree (the so-called vertical valves), the tumble ratio, swirl ratio, turbulent intensity, and turbulent kinetic energy in the direction perpendicular to the bisecting plane of the cylinder are at their highest levels than those obtained for the other cases. This effect is most pronounced after the compression stroke of the cycle. As a result of this study, it is observed that the behavior of the overall flow field from the intake to the completion of compression stroke has a major impact on the effectiveness of the mixing of fuel-air prior to the ignition of the engine cycle.
目錄
中文摘要
英文摘要
目錄
表目錄
圖目錄
符號說明
第一章 緒論
1-1 引言
1-2 文獻回顧
1-3 本文架構
第二章 理論模式
2-1 KIVA發展簡介
2-2 統御方程式
2-3邊界條件
2-4 數值方法
2-4.1 網格點定義
2-4.2 KIVA運算程序
2-4.3 RNG 紊流模式
第三章 數值模擬
3-1 問題描述
3-2 基本假設
3-3 網格建立
3-4 數值計算
3-5 數值測試
第四章 結果與討論
4-1 模擬個案敘述
4-2 滾流與渦漩流
4-2.1滾流強度
4-2.2渦漩
4-3 動能
4-4紊流特性
4-5 總結
第五章 結論與未來展望
5-1結論
5-2未來展望
參考文獻
附錄A KIVA-3V程式輸出入檔說明
[1] J. B. Heywood, Internal Combustion Engine, McGrawHill, 1988.[2] J-F. Le Coz, S. Henriot, and P. Pinchon, “An Experimental and Computational Analysis of the Flow Field in a Four-Valve Spark Ignition Engine─Focus on Cycle-Resolved Turbulence,” SAE Paper No. 900056.[3] P. Beladini, C. Bertoli, F. E. Corcione, and G. Valentino, “In-Cylinder Flow Measurements by LDA and Numerical Simulation by KIVA-II Code,” SAE Paper No. 920155.[4] Z. Han, R. D. Reitz, “Turbulence Modeling of Internal Combusion Engines Using RNG k- Models,” Combust. Sci. and Tech., 1995, Vol. 106, pp.267-295.[5] B. Delhaye, B. Cousyn, “Computation of Flow and Combustion in Spark Ignition Engine and Comparison with Experiment,” SAE Paper No. 961960.[6] L. Lebrere, B. Dillies, “Engine Flow Calculations Using a Reynolds Stress Model in the KIVA-II Code,” SAE Paper No. 960636.[7] M. Y. E. Selim, J. C. Dent and S. Das, “Application of CFD to the Maching of In-Cylinder Fuel Injection and Air Motion in a Four Stroke Gasoline Engine,” SAE Paper No. 971601.[8]羅治平, “單缸透明引擎數值模擬與紊流量測”, 國立清華大學動力機械研究所碩士論文, 1995。[9] 戴良哲, “單缸引擎缸內流場邊界條件建立以及三維數值模擬”, 國立清華大學動力機械研究所碩士論文, 1996。[10] 葉建良, 龔松長, 牛仰堯 “Three - Dimensional Computations of the Overall Flow Process In a Four-Stroke Engine,” 中華民國第八屆燃燒科技應用研討會論文集pp. 333~338, 1998。[11] 鄧治東,李明蒼、林春宏 ”A Study on a DOHC Internal Combustion Engine,” 中華民國第八屆燃燒科技應用研討會論文集pp.349~352, 1998。[12] 李明蒼, “內燃機引擎內熱流現象之數值研究”, 私立中原大學機械研究所碩士論文, 1999。[13] A. A. Amsden, P. J. O’Rourke and T.D. Butler, “KIVA-II: A Computer Program for Chemically Reactive Flows with Sprays,” Los Alamos National Laboratory report LA-11560-MS.[14] A. A. Amsden, “KIVA-3: A KIVA Program with Block-Structured Mesh for Complex Geometries,” Los Alamos National Laboratory report LA-12503-MS.[15] A. A. Amsden, “KIVA-3V: A Block-Structured KIVA Program for Engines with Vertical or Canted Valves,” Los Alamos National Laboratory report LA-13313-MS.[16] S. V. Patankar, Numerical Heat Transfer And Fluid Flow, Hemisphere Publishing Co., 1980, pp.126~131.[17] D. P. Hoult and V. W. Wong, “The Generation of Turbulence in An Internal-Combustion Engine,” Combustion Modeling in Reciprocating Engines, 1978, pp. 131~160.[18] B. E. Launder and D. B. Spalding, Mathematical Models of Turbulence, Academic Press, 1972.[19] H. Tennekes and J. L. Lumley, A First Course in Turbulence, The MIT Press, 1972.[20] M. L. Monaghan and H. F. Pettifer, “Air Motion and Its Effect on Diesel Performance and Emissions,” SAE Paper No. 810255.[21] 楊瑞珍, ”紊流模式在工程上之應用”, 國立成功大學工程科學系, 1997。[22] V. Yakhot, L. M. Smith, “The Renormaliztion Group, the -Expansion and Derivation of Turbulence Models,” J. of Scientific Computing, Vol. 7, No. 1, 1992, pp. 35~61.[23] D. C. Wilcox, Turbulence Modeling for CFD, DCW Industries, 1st ed., 1994.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 8.高辛陽(民86),「品質未來-瞄準服務品質」,品質管制月刊,第33卷,第1期,pp.21-23。
2. 26.楊錦洲(民82),「服務業的品質目標與策略」,品質管制月刊,第29卷,第8期,pp.19-22。
3. 7.林政榮(民87),「顧客價值管理-新世紀服務品質的競爭優勢的利器」,品質管制月刊,第34卷,第4期,pp.23-26。
4. 25.楊錦洲(民82),「服務業的品質保證」,品質管制月刊,第29卷,第7期,pp.16-25。
5. 24.楊義明,曹健齡(民86),「QS-9000 產品品質規劃之實施程序與效益」,品質管制月刊,第33卷,第5期,pp.22-23。
6. 22.張峻源(民87),「服務的品質展開法」,品質管制月刊,第34卷,第4期,pp.27-35。
7. 21.曹健齡,楊義明(民86),「QS 9000生產另件核准程序之實施與效益」,品質管制月刊,第33卷,第5期,pp.25-28。
8. 18.陳耀茂(民87),「使用顧客滿意的貢獻值與所需成本之比率選擇機能提高方案之方法簡介」,品質管制月刊,第34卷,第4期,pp.40-47。
9. 15.陳永甡(民87),「服務品質之探索」,品質管制月刊,第34卷,第4期,pp.15-18。
10. 13.陳文輝(民86),「邁向國際舞台的通行證--QS-9000」,品質管制月刊,第33卷,第5期,pp.20-21。
11. 12.陳文隆(民87),「建構服務零抱怨,落實顧客滿意度」,品質管制月刊,第34卷,第4期,pp.19-22。
12. 10.徐自強(民87),「服務品質差距之改善」,品質管制月刊,第34卷,第4期,pp.36-39。
 
系統版面圖檔 系統版面圖檔