(18.206.238.77) 您好!臺灣時間:2021/05/12 00:51
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:歐陽慶龍
研究生(外文):Ching-Long Ou Yung
論文名稱:光學偏光鏡定位控制
論文名稱(外文):Position Control of the Optical Beam Deflector
指導教授:黃健生黃健生引用關係
指導教授(外文):Jeng-Sheng Huang
學位類別:碩士
校院名稱:中原大學
系所名稱:機械工程研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2001
畢業學年度:89
語文別:英文
論文頁數:47
中文關鍵詞:根值法光學偏光鏡有限元素法最佳化控制觀察器
外文關鍵詞:observersoptical beam deflectorfinite element methodoptimal controlpole placement apporach
相關次數:
  • 被引用被引用:0
  • 點閱點閱:110
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0

摘 要
本論文的光學偏光鏡樑是由兩個壓電層,中間夾者一個黃銅所結合而成的,樑的兩邊都是固定住,上壓電層的中間部分黏貼者鏡子。藉由給額外的電壓到壓電層使得鏡子可以到達固定的角度。學習用最佳的控制去使得鏡子到達所要的角度。統御方程式先被推導出來,然後用有限元素法的方法,其中定義的九個節點在偏光鏡的固定位置上,變成有限元素法的模式來方便分析及作控制設計。為了使偏光鏡以最快的速度到達所要的角度,一個最佳化控制的方法是線性二次控制器,其中最後狀態是任意的,用於使得有最快的響應及最少的電壓輸入。除此之外,根值法結合觀察器也用來做角度控制。而最佳化控制的輸入由解方程式Riccati ,以穩態的時間來解。模擬的結果證明了控制的結果是對的。比較兩種控制方法,可以看出最佳化的圖是比較好的。


ABSTRACT
In this paper, the optical beam deflector is composed of two piezoelectric layers, one sandwiched brass layer in the middle with both ends clamped and a mirror attached to the upper surface of the top piezoelectric layer in the central position. This structure is designed to deflect the mirror to a certain angular position by applying external voltage supply to piezo-layers. This study proposes an optimal angular position control scheme of the attached mirror. The governing partial differential equations are first derived for the ensuing analysis and control design, which is followed by the establishment of finite element model in ten nodes specified at some longitudinal points of the optical beam deflector. In order to achieve a faster convergent rate for the deflector to reach the desired angular position, the optimal control of LQR (Linear quadratic regulator) with final states free is employed to explore the possibility of shorter transient response and less cost of control effort and states. Besides, the pole-placement control with observer is employed to control the angular position. The optimal feedback control is obtained based on solving Riccati equation in steady state time. The numerical simulation results are finally provided to validate the theoretical control design.


Contents
摘要 I
Abstract II
誌謝III
ContentsIV
Figure Caption V
Table Caption VI
Nomenclature VII
1. Introduction 1
2. Finite Element Model for the Optical Beam deflector 3
2-1 Physical Model 3
2-2 Equation of Motion 3
2-3 Finite Element Method 6
3. Theory of Position Control Design 9
3-1 Optimal Control Design 9
3-2 Pole Placement Approach Design 12
3-3 Design of State Observers14
3-4 Observed-Stated Feedback Control 17
4. Numerical Result 19
5. Conclusion 20
Acknowledgment21
Reference 21
Appendix 23
Figure 26
Table34
簡歷35


REFERENCES[1] J. J. Shaffer and D. L. Fried, Bender-bimorph scanner analysis, Appl. Opt. 9 pp. 933-937, (1970).[2]J. K. Lee, Piezoelectric bimorph optical beam scanners: analysis and construction, Appl. Opt. 18 pp. 454-459.[3]J. I. Montagu, in Optical Scanning (Dekker, New York), chap. 10 (1991) 525-556.[4]J. I. Montagu, in Laser Beam Scanning, Optomechanical Devices, Systems, and Data Storage Optics, G. F. Marshall, ed. (Dekker, New York), chap.5 (1985) 193-219.[5] Juang, J. N., and Eodriguez, G., “Use of Piezoceramics as Distributed Actuators in Large Space Structure Actuator and Sensor Placements,” 2nd Symposium of Dynamics and Control of Latge Flexible Spacecraft, Virginia Polytechic Inst. &State Unv., Blacksburg, VA, June. (1979) 247-262.[6]Chang, M. t. J., and Soong, T. T., “Optimal Controller Placement in Modal Control of Complex Systems,” Journal of Mathematics Analysis and Applications, Vol. 75, No. 2, pp. 340-358, 1980.[7]Linderg, R. E., Jr., and Longman, R. Q., “On the Number and Placement of Actuators for Independent Modal Space Control,” Journal of Guidance, Control, and Dynamics, Vol. 7, No 2, pp. 215-221,1984.[8]Hanagud, S., Won, C. C., and Obal, M. W., “Optimal Placement of Piezoceramics Sensors and Actuators,” American Control Conference, Vol. 3, pp. 1884-1889, 1998.[9]R. F. Fung, C. M. Yao, and Tseng C. R., “Dynamic analysis of a bimodal ultrasonic motor with initially stressed force onto the rotor,” Sensors and Actuators A, Vol. 72, pp. 726-728, 1999.[10]Q. M. Wang, and L. E. Cross, “Constitutive equations of symmetrical triple layer piezoelectric benders,” IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, Vol. 46, pp. 1343-1351, 1999.[11]L. Lewis. Frank and L. S. Vassilis, “Optimal Control,” John Wiley and Sons editions, Inc., Chapter 3, 1995.[12]Q. Katsuhiko, “Modern Control Engineering,” Prentice-Hall International editions, Inc, Chapter 10, 1990.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔