(3.236.118.225) 您好!臺灣時間:2021/05/16 13:50
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:林建源
研究生(外文):Chien-Yuan Lin
論文名稱:皮膚組織加熱前後血流與血量的相關性
論文名稱(外文):The relationship between blood flow and blood volume of in skin tissue before and after heating
指導教授:蔡正倫蔡正倫引用關係
指導教授(外文):chung-Lun Tsai
學位類別:碩士
校院名稱:中原大學
系所名稱:醫學工程研究所
學門:工程學門
學類:綜合工程學類
論文種類:學術論文
論文出版年:2001
畢業學年度:89
語文別:中文
論文頁數:58
中文關鍵詞:光體積描繪圖綠光半導體雷射光纖式血流血量量測系統燒燙傷程度都卜勒頻譜
外文關鍵詞:The degree of burnsDoppler frequencygreen light diode laseroptic-fibre measurement system for blood flow an
相關次數:
  • 被引用被引用:9
  • 點閱點閱:266
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
植皮手術是治療中重度燒燙傷的主要方法,而各部位燒燙傷程度判斷的準確性,直接影響手術的成功率,然而,燒傷程度的判斷卻仍是一大難題。一般外科醫師,多半由其外觀與感覺功能,做主觀判斷,因而容易造成許多誤判,延誤治療時機。由於燒傷程度最難判別的地方就是2度深層及3度燒傷的模糊地帶,而其所達之深度約為綠光的穿透深度,由於深度不深所以光源與檢測器的距離需盡量靠近,因而採用細光纖來做光的傳導與檢測,且光源採用綠光半導體雷射(532nm)。目前臨床上使用雷射都卜勒測量加熱前後血流速的改變,在判斷燒傷深度已有不錯的結果,為了研究是否能以更簡單的血量量測來取代血流量測,因此本研究架構一光纖式血流及血量量測系統,藉由量測皮膚組織在加熱前後都卜勒頻譜的變化作為血流變化的指標以及同時量測光血管收縮舒張造成的血量改變使光吸收度產生變化亦即觀察光體積描繪圖(PPG)做為血量的變化的指標。依照這些指標來瞭解皮膚組織中微血管是否仍能正常擴張,以判斷皮膚燒燙傷程度。實驗結果顯示血流血量的頻譜在加熱之後確有明顯的變化,各部位都卜勒的平均頻移量在加熱之後變大範圍在120% ~ 350%之間,以臉部的變化最明顯。血量在加熱後的變大範圍在180% ~ 550%之間。
因此組織加熱的血量改變,較血流的改變更靈敏,由於血量量測較簡單,未來將有可能發展出比雷射血流計更便宜的燒傷深度量測儀器。
Skin-grafting is a main method to treat deep burns. The success of skin grafting greatly depends on the correct determination of burn depth. However, this is still very difficult in clinical practice. Most burn depth diagnosis is still by the clinical assessment of an experienced burn surgeon. Although the judgment could be quite accurate for very deep or very shallow burns, clinical assessment of the second degree and the third degree of burns are very difficult. One promising method for measuring the burn depth is to evaluation the change in blood flow after heating. The blood flow of microcirculation in skin tissue is measured using laser Doppler flowmeter. Since skin burn is only a few hundred microns in depth and this is about the penetration depth of green light in skin tissue, green light diode laser (532 nm) was used as the light source. The probing depth is also restricted by the size of optical fibers and the distance between them
In this study, a measurement system was built to simultaneously measure the changes in skin blood flow and blood volume before and after heating to 42°C. The experiment results show that the Doppler mean frequency at different measuring sites increased from 120% to 350% and the signal of photoplethysmography (the change in blood volume) could increase from 180% ~ 550%. In general, the change in tissue blood volume is more obvious than the change in blood flow after heating. Therefore, a photoplethysmography can be used to replace the more expensive and complex laser Doppler flowmeter.
目錄
摘要………………………………………………………………………I
ABSTRACT…………………………...…………………………………II
致謝………..…...……………..……...…………………………………III
目錄 …………………………..……...…………………………………IV
圖索引…………………………………………………………………..VI
第一章緒論 …..………………………………………………………..1
1.1研究目的…………………………………………..……………..1
1.2研究背景及重要性………………………..………..……………1
1.3相關文獻回顧 …….………………………………..…………...1
1.4論文架構 …..……….………………………………..……..…...3
第二章基本理論 …..…………………………………………….....4
2.1 皮膚組織的光學特性…………………….……………………...4
2.2 皮膚溫度的調節機制 ……….…….………...…...….…………..6
2.3 血量變化量測原理(Photoplethymography)….………………..7
2.4 都卜勒效應(Doppler effect)…………….…………………….8
2.5 皮膚血流頻譜輸出特性…………………….………………..…..9
2.6 雷射都卜勒流速計(Laser Doppler Anemometry,LDA)…..10
2.7 皮膚加熱前後都卜勒頻譜及血量頻譜變化…………………...11
2.7.1皮膚加熱前後都卜勒頻……………………………………………..11
2.7.2皮膚加熱前後血量頻………………………………………………..11
第三章研究設備與方法 ….………………….………………………13
3.1 血流血量量測系統架構……………………………….………13
3.1.1光源光纖系統……….………….……………………………………14
3.1.2光學探頭 ….……..……………………….…………………………15
3.1.3血流血量檢測路線 ……..……………..…………..……………….16
3.2 Doppler 血流測試系統…………………………..……………17
3.2.1體外穩定流速循環系統 …………….…………………………..….17
3.2.2自製模擬物體運動探頭 ……………….……….…..………………18
第四章結果與討論 ……………………………….…………….…... 21
4.1都卜勒頻譜量測……..…………………………..…………… 21
4.1.1自製移動探頭都卜勒量測 .……………………………………..21
4.1.2 體外流管不同流速都卜勒頻移訊號 ….…………………………..22
4.1.3 皮膚組織加熱前後的紅光都卜勒頻譜 ..……………………..……24
4.1.4 皮膚組織加熱前後的綠光都卜勒頻譜………………....…………. 34
4.2 血量量測…………………………………………………….…. 41
4.2.1皮膚加熱前後的血量量測時域分析 ….…………………..……42
4.2.2皮膚加熱前後使用高亮度綠光發光二極體的血量量測…..……... 43
4.2.3皮膚加熱前後使用綠光半導體雷射的血量量測….……………….49
第五章 結論與未來展望 …….………………….…………………... 53
第六章 參考資料 …………….……………………………..……….. 55
第六章 參考文獻1.楊永健, “應用雷射都卜勒血流計研究燒傷深度,”台灣醫學, 1卷3期, pp.359- 363, 1997.2.李旺祚, “皮膚血流概況,” 蓋統生理學, CH29, pp.439-452, 1989.3.蕭富榮, “測量組織受熱後血流與血量的變化以判斷燒燙傷程度,” 中原大學醫 學工程學系碩士論文.4.M. L. Arildsson, K. Waredell, and G. E. Nillson, “Higher order moment processing of laser Doppler perfusion signals,” Jour. Of Biomed. Optics., 2(4), pp.358-363, 1997.5.R. Bonner, R. Nossal, “Model for laser Doppler measurements of blood flow in tissue,” Applied optics, vol.20, pp. 2097-2107, 1981.6.H. Cai, H. Pettersson, H. Rohman, S. —E. Larsson and P. A. Oberg, ” A new single-fibre laser Doppler flowmeter based on digital signal processing,” Med. Eng. Phys., 18, pp.523-528, 1996. 7.L. Duteil, J. C. Bernen, and W. Schalla, “A double wavelength laser Doppler system to investigate skin microcirculation,” IEEE Trans. Biomed. Eng., 32, pp.439-447, 1985.8.J. Giltvedt, A. Sira, P. Helme, “Pulsed multifrequency photoplethysmograph,” Med. & Biol. Eng. & Comput., 22, pp.212-215, 1984.9.D. Heimbach, B. Grubee, and J. Marvin, “Burn depth,” World J. Surg, 16, pp.10-15, 1992.10.A. Jakobsson, G. E. Nillsson, “Prediction of sampling depth and photon pathlength in laser Doppler flowmetry, ” Med. & Biol. Eng. & Comput., 31, pp.301-307, 1993.11.A. Liebert, M. Leahy, R. Maniewski, “Multichannel laser-Doppler probe for blood perfusion measurements with depth discrimi-nation,” Med. Biol. Eng. Comput., 36, pp.740-747, 1998.12.L. G. Lindberg, T. Tamura, and P. A. Oberg, “Photoplethy-smography Part1 comparison with laser Doppler flowmetry,” Med. & Biol. Eng. & Comput., 29, pp.40-47, 1991.13.L. G. Lindberg, P. A. Oberg, “Photoplethysmography Part2 influence of light source wavelength,” Med. & Biol. Eng. & Comput., 29, pp.48- 54, 1991.14.G. E. Nilsson, “Signal processor for laser Doppler tissue flowmeters,” Med. & Biol. Eng. & Comput.,.22, pp.343-348, 1984.15.G. E. Nilsson, T. Tenland, P. A. Oberg, “Evaluation of a laser Doppler flowmeter for measurement of tissue blood flow,” IEEE Trans. Biomed. Eng., 27, pp.597-604, 1980. 16.G. E. Nilsson, T. Tenland, P. A. Oberg, “ A new instrument for continuous measurement of tissue blood flow by light beating spectroscopy,” IEEE Trans. Biomed. Eng., 27, pp.12-19, 1980. 17.A. N. Obeid, D. M. Boggett, N. J. Barnett, and G. Dougherty, “Depth discrimination in laser Doppler skin blood flow measure-ment using different lasers,” Med. & Biol. Eng. & Comput., 26, pp.415-419, 1988.18.A. N. Obeid, “In vitro comparison of different signal processing algorithms used in laser Doppler flowmetry,” Med. & Biol. Eng. & Comput., 31, pp.43-52, 1993.19.Marc Rendell, Chad Hovelson, Kelly O’Connor, Lance Cheung, Scott Huard, Tae-Sok Kong, Anthony Catania and Robert Rosenthal, “Determination of blood flow in the finger using near-infrared spectroscopy,” Clinical Physiology 18, 5 , pp.426-434, 1998. 20.E. G. Salerud, P. A. Oberg, “Single-fiber laser Doppler flow- metry,” Med. & Biol. Eng. & Comput., 25, pp.329-334, 1987.21.A. P. Shepherd, and P. A. Oberg edited, “Laser-Doppler blood flowmetry,” Kluwer Academic Publishers, 1990.22.D. Watkins and G. A. Holloway, “An instrument to measure cutaneous blood flow using thee Doppler shift of laser light,” IEEE Trans. Biomed. Eng., 25, pp.28-33, 1978.23.K. Waxman, N. Lefcourt, and B. Achauer, “Heated laser Doppler flow measurements to determine depth of burn injury,” Ameri. Jour. Surg, 157, pp.541-543, 1989.24.J. G. Webster, “Medical instrumentation application and design”, John Wiley & Sons, INC. 1995. 25.Y. Mendelson and B. D. Ochs, “Noninvasive pulse oximetry utilizing skin reflectance photoplethysmography”, IEEE Trans. On Biomed. Eng., 35(10), pp.798-805,1988.26.A. Sterfanovska, M. Bracic, and H. D. Kvernmo, “Wavelet analysis of oscillations in the peripheral blood circuition measured by laser Doppler technique,” IEEE Trans. On Biomed. Eng., 46(10), pp.1230- 1239, 1999.27.P. Starukhin, S. Ulyanov, E. Galanzha, and V. Tuchin, “Blood-flow measurements with a small number of scatting events,” Appl. Opt., 39 (16), pp. 2823-2829, 2000.28.K. Hirata, T. Nagasaka, and Y. Noda, “Partional measurement of capillary and arteriovenous anastomotic blood flow in the human finger by laser-Doppler-flowmeter,” Eur. J. Appl. Physiol., 57, pp.616-621, 1988.29.R. J. Gush, T. A. king, and M. I. V. Jayson, “Aspects of laser light scattering from skin tissue with application to laser Doppler blood flow measurement,” Phys. Med. Biol., 29(12), pp. 1463-1476, 1984.30.N. E. Almond, D. P. Jones and E. D. Cooke, “High quality photoplethysmography signals from a laser Doppler flowmeter: preliminary studies of two simultaneous outputs from the finger,” J. Biomed. Eng., 10 1988.31.S. C. Malpas, B. L. Leonard, S. J. Guild, J. V. Ringwood, M. Navakatikyan, P. C. Austin, G. A. Head, D. E. Burgess, “The sympathetic nervous system’s role in regulating blood pressure variability,” IEEE Eng. In Med. and Bio., pp. 17-24, 2001.32.H. D. Kvermno, A. Stefanovska, M. Bracic, K. A. Kirkeboen, and K. Kvernebo, “Spectral analysis of the laser Doppler perfusion signal in human skin before and after exercise,” Microvascular Research, pp. 173-182,1998.33.F. H. Martini, and E. F. Bartholomew, “The integumentary system,” Structure and function of the human body , 1999.34.T. S. Durrani and C. A. Greated, Laser systems in flow measurement. Plenum, New York, 1976.35.F. Durst, A. Melling and J. H. Whitelaw, Principles and practice of laser-Doppler anemometry. Academic, New York, 1976.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top