(3.236.214.19) 您好!臺灣時間:2021/05/06 20:32
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:邱耀慶
研究生(外文):Yao-Ching Chiu
論文名稱:全人工髖關節損壞機制之研究:臨床與實驗取得殘屑之比較
論文名稱(外文):Failure Mechahism of Hip Joint Prothesis:Wear Debris Obtained from Tissue-detached Particles in Comparison with Laboratory Assessmnet
指導教授:廖峻德廖峻德引用關係
指導教授(外文):Jiunn-Der Liao
學位類別:碩士
校院名稱:中原大學
系所名稱:醫學工程研究所
學門:工程學門
學類:綜合工程學類
論文種類:學術論文
論文出版年:2001
畢業學年度:89
語文別:中文
論文頁數:70
中文關鍵詞:臨床殘屑模擬磨耗殘屑全人工髖關節超高分子聚乙烯
外文關鍵詞:and tissue-detached particleslaboratory-made wear debrisultra-high molecular polyethyleneTotal hip joint prosthesis
相關次數:
  • 被引用被引用:6
  • 點閱點閱:162
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:2
全人工髖關節鬆脫所引起的相關骨科問題是影響植入物固定的重要因素。針對關節組件產生磨耗機制及其所引發殘屑對植入物周圍組織反應,本研究探討殘屑在生理代謝系統、以及人工關節周圍骨組織發生再吸收,而導致全人工關節最終失敗的可能影響。藉由交叉式髖臼-球模擬磨耗機,以接近人體步態的條件進行模擬,收集並分析模擬人工關節磨耗所產生的殘屑,並與自置換病人取出鬆脫關節周圍組織進行萃取後之殘屑進行比較,嘗試解釋人工關節固定失敗的發生原因。實驗結果顯示:以去離子水為循環液模擬關節滑液,以小孔徑濾紙約0.7μm進行收集,可得到小型殘屑約10μm;同時,該孔徑濾紙適合使用過濾去組織的殘屑,並防止乾燥後顆粒的聚集(亦約10μm)。模擬殘屑產生的形態與磨損界面的磨耗型式相關。超高分子聚乙烯臼杯之機械性質因承受金屬球頭的不同負載而產生磨損誘發效應,如:使外表層分子堅硬或應變硬化。磨耗初期,分子經斷鍵產生極性,導致殘屑彼此聚集成泡狀形態;交叉形式的磨耗引起對漸進硬化層的剪力作用,導致片狀殘屑的產生。模擬磨耗殘屑的形態與成分隨測試次數而有不同。平均殘屑累積質量約為16.5 mg每百萬測試次,與先前模擬磨耗或臨床統計約每年18 mg的結果相近。對殘屑元素分析結果發現:臨床及模擬磨耗殘屑皆僅含微量金屬元素,推測殘屑應以含聚乙烯物種為主。若發生聚乙烯被磨穿而使金屬球頭與金屬外襯互相磨損,則臨床殘屑明顯含有較高的金屬元素比例。
Loosening of total hip joint prosthesis provokes related orthopedic problems, which greatly influence the failure events from implant fixation. Aimed to study the wearing mechanics of joint components and the wear debris induced peri-prosthetic tissue responses, this work looks into the impact of wear debris generation in human physiological system and of bone resorption leading to eventual failure of hip joint prosthesis. A cross-mode cup-on-ball hip joint simulator is utilized for testing under assigned conditions. Study of laboratory-made wear debris compared with tissues-detached particles tries to interpret the occurrence of fixation failure for hip prosthesis. Experimental result has demonstrated that using de-ionized water as circulation liquid for lubricating, a filter with reduced pore dimensions (~0.7 mm) is capable to obtain small particles such as ~10 mm in size. Similarly, this filter is suitable to sieve tissue-detached particles and to prevent them from agglomeration (~10 mm in size). Morphologies of laboratory-made wear debris are correlated with the wearing modes at the bearing interface. Mechanical properties of UHMW polyethylene acetabular cup against metallic ball head diversify with the degree of applied loads and abrasion-induced effects such as molecular rigidity or strain hardening at the outmost surface. In the early stage, the scission of polymeric chains creates polarizable ends and initiates foam-like agglomerates; then, crossing-mode abrasion provokes shear stress on the gradually hardened layer and leads to the generation of plate-like debris. Morphologies and compositions of laboratory-made wear debris differ with testing cycles (TCs). An average mass release of ~16.5 mg per million TCs is calculated, which corresponds to clinical findings as well as previous simulations (~18 mg per million TCs). Laboratory-made debris and tissue-detached particles do not obviously contain metallic elements. It is thus estimated that wear debris is mainly composed of polyethylene species. In clinical case of wearing concentration on polyethylene cup that causes metal ball head rubbing through it and bearing with metal cup or mesh, the content of metal elements in tissue-detached particles becomes evident.
第一章序論
1-1研究目的….…………………………….………………………1
1-2文獻回顧……………………………………………….……….4
第二章理論基礎
2-1人工髖關節使用材質………………………………..…………7
2-1-1金屬類………………………………….……….…………7
2-1-2陶瓷類………………………………….……….…………8
2-1-3高分子聚合物…………………………..…………………9
2-1-4複合材料…………………………………………………10
2-2常見人工髖關節之種類………………………………………12
2-3人工髖關節之鬆脫機制……………………..…………….…14
2-3-1應力遮蔽效應……………………...…………………….14
2-3-2骨溶解效應……………………..…………….………….15
2-4人工髖關節之負載…………………………………...……….17
2-5磨耗機制………………………….………………………...…18
2-5-1磨耗之形式………………………………………………18
2-5-2潤滑條件之影響………………………………………....20
2-6磨耗殘屑引起之生理機制………………………...………….22
2-6-1金屬對人體之影響…………………………………….23
2-6-2高分子對人體之影響………………………………….24
2-7人工髖關節磨耗形式分類與殘屑形態…………………….25
第三章材料與方法
I.人工髖關節體外磨耗模擬
3-1實驗材料………………………………………..…………….27
3-2模擬磨耗機台…………………………………..…………….28
3-2-1模擬負載系統…………………………..…………….…28
3-2-2恆溫循環系統…………………………..……………….29
3-3實驗流程……………………………………..…………….…31
II.人工髖關節體內磨耗萃取
3-4病歷資料……………………………………...……………….33
3-5殘屑萃取步驟…………………………….…..…………….…34
III.分析儀器之使用
3-6掃瞄式電子顯微鏡…………………….…..………………….36
3-7感應耦合電漿質譜儀……………….……..………………….40
第四章結果與討論
4-1模擬磨耗結果與討論…………………………..….………….41
4-1-1模擬磨耗殘屑表面形態……………….……..………….41
4-1-2模擬磨耗殘屑形態討論…………….…………..……….44
4-1-3模擬磨耗殘屑重量變化……………...………………….47
4-1-4模擬磨耗殘屑質量探討…………………….…..……….49
4-1-5模擬磨耗殘屑成分分析…………………………………51
4-1-6模擬磨耗殘屑成分分析討論……………………………54
4-2臨床磨耗結果與討論………………………………………....55
4-2-1臨床磨耗殘屑表面形態………………..………………..51
4-2-2臨床磨耗殘屑形態討論………………………………....59
4-2-3臨床磨耗殘屑成分分析…………….………..………….61
4-2-4臨床磨耗殘屑成分分析討論……………………………64
4-3模擬磨耗與臨床磨耗結果之討論……………………………65
第五章結論…………………………………….……………………...68
第六章未來展望……………………………………..……………….70
參考文獻
1.韋文誠、鄭誠功、關永武,陶瓷人工髖關節球頭之發展與評估,科學發展月刊,第二十七卷,第九期,pp. 998-1007。2.S. Santavirta, “Biocompatibility of polyethylene and host response to loosening of cementless total hip replacement”, Clinical Orthopaedics and Related research, No 297, pp.100-110, 1993.3.A. S. Shanbhag, J. J. Jacobs, T. T. Glant, ”Composition and morphology of wear debris in failed uncemented total hip replacement”, The Journal of Bone and Joint Surgery, Vol. 76-B, No. 1, Jan, 1994.4.D. H. Sochart, “Relationship of acetabular wear to osteolysis and loosening in total hip arthroplasty”, Clinical Orthopaedics and Related Research, No. 363, pp. 135-150, 1999.5.H. A. McKellop, P. Campbell, S. H. Park, “The origin of submicron polyethylene wear debris in total hip arthroplasty”, Clinical Orthopaedics and Related Research, No. 311, pp. 3-20, 1995.6.A. Wang, D. C. Sun, “Orientation softening in the deformation and wear of ultra-high molecular weight polyethylene”, Wear, Vol. 203-204, pp. 230-241, 1997.7.C. R. Bragdon, D. O. O’connor, B. Ramamurti, “A hip simulator evaluation of different forms of highly cross-inked polyethylene”, 11th Conference of ESB, July 8-11, 1998.8.S. A. Biggs, C. R. Bragdon, K. Garas, O.K. Muratoglu, P. J. Caruso, W. H. Harris, “Qualitative analysis of polyethylene particles extracted from bovine serum used in a hip simulator”, 11th Conference of ESB, July 8-11, 1998.9.P. Ducheyne, G. W. Hastings, “Metal and ceramic biomaterials”, Boca Raton, Florida, Vol. 1, Chap. 4, pp. 79-107, 1984.10.J. A. Davidson, “Characteristics of metal and ceramic total hip bearing surface and the effect on long-term UHMWPE wear”, Orthopaedic Research Report OR-92-08, Smith and Nephew, 1991.11.S. S. Seymour, “Plastics materials and processes”, Van Nostrand Reinhold, New York, pp. 74-77, 1982.12.S. R. Simon, “Orthopaedic basic science”, American Academy of Orthopaedic Surgeons, p.474, 1994.13.S. L. Evans, P. J. Gregson, “Composite technology in load-bearing orthopaedic implants”, Biomaterials, Vol. 19, pp. 1329-1342, 1998.14.Y. Fu, A. W. Batchelor, “Fretting wear behavior of thermal sprayed hydroxyapatite coating lubricated with bovine albumin”, Wear, Vol. 230, pp. 98-102, 1999.15.M. Rψkkum, M. Brandt, K. Bye, K. R. Hetland, S. Waage, A. Reigstad, “Polyethylene wear, osteolysis and acetabular loosening with an HA-coated hip prosthesis”, The Journal of Bone and Joint Surgery, Vol. 81-B, pp. 582-589, 1999.16.D. P. Dowling, P. V. Kola, K. Donnelly, “Evaluation of diamond-like carbon-coated orthopaedic implants”, vol. 6, pp. 390-393, 1997.17.M. T. Raimondi, R. Pietrabissa, “The in-vivo wear performance of prosthetic femoral heads with titanium nitride coating”, Biomaterials, Vol. 21, pp. 907-913, 2000.18.W. Petty, “Total Joint Replacement”, W. B. Saunders Company, pp.441-455, 1991.19.R. M. Hall and A. Unsworth, “Review-Friction in hip prostheses”, Biomaterials, Vol. 18, pp. 1017-1026, 1997.20.R. J. A. Bigsby, D. D. Auger, Z. M. Jin, D. Dowson, C. S. Hardaker, J. Fisher, “A comparative tribological study of wear of composite cushion cups in a physiological hip joint simulator”, Journal of Biomechanics, Vol. 31, pp. 363-369, 1998.21.S. J. Hall, “Basic Biomechanics”, The McGraw-Hill Companies, Inc., Chap. 4, 1995.22.W. H. Harris, “Osteolysis and particle disease in hip replacement-A review”, Acta orthopaedica Scandinavica, Vol. 65, lss 1, pp. 113-123, 1994.23.H. G. Willert, H. Bertram, “Osteolysis in alloarthroplasty of the hip-The role of ultra-high molecular weight polyethylene wear particles”, Clinical Orthopaedics and Related Research, No. 258, Sep, 1990.24.M. T. Manley and P. Serekian, “Wear debris-An environmental issue in total joint replacement”, clinical Orthopaedics and Related Research, No. 298, pp. 137-146, 1994.25.M. J. Griffith, M. K. Seidenstein, D. Williams and J. Charnley, “Eight year results of Charnley arthroplasties of the hip with special reference to the behavior of cement”, Clinical Orthopaedics and Related Research, No. 137, pp. 24-36, 1978.26.J. K. Weaver, “Activity expectations and limitations following total joint replacement”, Clinical Orthopaedics and Related Research, No. 137, pp. 55-61, 1978.27.C. H. Lohmann, Z. Schwartz, ”Phagocytosis of wear debris by osteoblasts affects differentiation and local factor production in a manner dependent on particle composition”, Vol. 21, pp. 551-561, 2000.28.M. Baleani, L. Cristofolini, M. Viceconti, “Endurance testing of hip prostheses: a comparison between the load fixed in ISO 7206 standard and the physiological loads”, Clinical Biomechanics, Vol. 14, pp. 339-345, 1999.29.S. R. Simon, “Orthopaedic basic science”, American Academy of Orthopaedic Surgeons, pp.466-467, 1994.30.J. E. Nevelos, E. Ingham, C. Doyle, J. Fisher, A. B. Nevelos, “Analysis of retrieved alumina ceramic components from Mittelmeier total hip prostheses”, Biomaterials, Vol. 20, pp. 1833-1840, 1999.31.S. R. Simon, “Orthopaedic basic science”, American Academy of Orthopaedic Surgeons, pp. 464-466, 1994.32.A. Wang, A. Essner, C. Stark, J. H. Dumbleton, “Comparison of the size and morphology of UHMWPE wear debris produced by a hip joint simulator under serum and water lubricated conditions”, Biomaterials, Vol. 17, No. 9, 1996.33.V. D. Good, I. C. Clarke, L. Anissian, “Water and bovine serum lubrication compared in simulator PTFE/CoCr wear model”, Journal of Biomedical Materials Research, Vol. 33, pp. 275-283, 1996.34.J. P. Van Loon, G. J. Verkerke, L. G. M. de Bont, R. S. B. Liem, “Wear-testing of a temporomandibular joint prosthesis: UHMWPE and PTFE against a metal ball, in water and in serum”, Biomaterials, Vol. 20, pp. 1471-1478, 1999.35.V. Chanddrasekaran, W. L. Sauer, A. M. Tayor, D. W. Hoeppner, “Evaluation of fretting corrosion behavior of the proximal pad taper of a modular hip design”, Wear, Vol. 231, pp.54-64, 1999.36.M. J. Paooas, G. Makris, F. F. Buechel, “Titanium nitride ceramic film against polyethylene”, Clinical Orthopaedics and Related Research, No. 317, pp. 64-70, 1995.37.V. O. Saikko, P. O. Paavolainen, P. Slatis, “Wear of the polyethylene acetabular cup-Metallic and ceramic heads compared in a hip simulator”, Acta orthopaedica Scandinavica, Vol. 64, pp. 391-402, 1993.38.J. O. Galante, J. Lemons, M. Spector, P. D. Wilson, “Review-The biologic effects of implant materials”, Journal of Orthopaedic Research, pp. 760-775, 1991.39.J. Y. Wang, B. H. Wicklund, R. B. Gustilo, D. T. Tsukayama, “Titanium, chromium and cobalt ions modulate the release of bone-associated cytokines by human monocytes/macrophages in vitro”, Biomaterials, Vol. 17, pp. 2233-2240, 1996.40.W. Petty, “Total Joint Replacement”, W. B. Saunders Company, Chap. 6, pp. 51-59, 1991.41.T. Hanawa, “In vivo metallic biomaterials and surface modification”, Materials Science and Engineering, A267, pp. 260-266, 1999.42.W. Petty, “Total Joint Replacement”, W. B. Saunders Company, Chap. 7, pp. 59-74, 1991.43.T. P. Schmaizried, and J. J. Callaghan, “Current concepts review-Wear in total hip and knee replacement”, The Journal of Bone and Joint Surgery, Incorporated, Vol. 81-A, No. 1, January 1999.44.G. Lubin, “Handbook of composites”, Van Nostrand Reinhold Company, New York, Sec. Ⅰ, pp. 19-160, 1982.45.G. Lawes, “Scanning Electron Microscopy”, Chichester [West Sussex]; New York, pp. 1-9, 1987.46.汪建民,材料分析,材料科學叢書2,1998。47.G. Lawes, “Scanning Electron Microscopy”, Chichester [West Sussex]; New York, pp. 76-79, 1987.48.行政院國家科學委員會,儀器總覽-化學分析儀器,精密儀器發展中心出版,1998。49.K. E. Jarvis, A. L. Gray, R. S. Houk, “Handbook of inductively coupled plasma mass spectrometry”, Blackie Academic & Professional, Chap. 2, 1992.50.賴育誠,全人工髖關節之鬆脫問題的實驗模擬與評估,中原大學醫學工程研究所,2000年6月碩士論文。51.尤昶清,髖關節模擬磨耗機對人工髖臼-球之磨耗殘屑研究,中原大學醫學工程所,1999年6月碩士論文。52.P. Ducheyne, G. W. Hastings, “Metal and ceramic biomaterials”, Boca Raton, Florida, Vol. 1, Chap. 2, pp. 7-63, 1984.53.呂維明,過濾技術,高立圖書,1994。54.P. Paul, “Orthopaedic knowledge update”, Rosemont, IL, American Academy of Orthopaedic Surgeons, Chap. 4, pp. 47-53, 2000.55.A. W. Lee, J. P. Santerre, E. Boynton, “Analysis of released products from oxidized ultra-high molecular weight polyethylene incubated with hydrogen peroxide and salt solutions”, Biomaterials, Vol. 21, pp. 851-861, 2000.56.O. K. Muratoglu, C. R. Bragdon, D. O. O’Connor, “Unified wear model for highly crosslinked ultra-high molecular weight polyethylene (UHMWPE)”, Biomaterials, Vol. 20, pp. 1463-1470, 1999.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔