(3.238.7.202) 您好!臺灣時間:2021/02/25 10:54
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:闕壯勳
研究生(外文):Chuang-Hs Cheuh
論文名稱:麵粉之化學組成與水餃皮品質之相關性
論文名稱(外文):Relationships between the Chemical Compositions of Wheat Flours and the Quality of Dumpling Crusts
指導教授:張基郁張基郁引用關係陳齊聖陳齊聖引用關係
指導教授(外文):Chi-Yue ChangChee-Shan Chen
學位類別:碩士
校院名稱:大葉大學
系所名稱:食品工程研究所
學門:農業科學學門
學類:食品科學類
論文種類:學術論文
論文出版年:2001
畢業學年度:89
語文別:中文
論文頁數:99
中文關鍵詞:水餃水餃皮化學組成蛋白質麵粉
外文關鍵詞:dumplingdumpling crustschemical compositionproteinwheat flour
相關次數:
  • 被引用被引用:4
  • 點閱點閱:952
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
中文摘要
本研究探討五種不同麵粉之化學成分(水分、粗蛋白質、灰分及蛋白質組成)及其製成水餃皮後之蒸煮特性(吸水率、最大吸水量、增重率、增容率及耗損率)與品質(感官品評分數、抗張強度及色澤),以分析麵粉化學組成與水餃皮品質間之相關性。本研究所使用之麥種為AHRS (American hard red spring) 、AHRW (American hard red winter) 、ASW (American soft white) 、APW (Australian prime hard) 與CWRS (Canadian western red spring);五種麵粉製做成水餃皮後,經由色澤測定、物性分析及感官品評比較其品質之差異,進而找出五種麵粉其最適之加工條件(攪拌加水量及攪拌時間) 。結果顯示五種麵粉製成水餃皮之最適加水量均為45%、攪拌時間均為10分鐘。
將五種麵粉基本組成與其水餃皮蒸煮特性進行相關性分析,結果顯示五種麵粉粗蛋白含量與蒸煮增重率、耗損率呈現顯著負相關;在麵粉水分含量方面也有相同的結果。麵粉基本組成與水餃皮品質之相關性分析方面,麵粉之粗蛋白含量與水餃皮之抗張強度及Hunter b值呈顯著正相關;在麵粉水分含量方面也有相同的結果。
本研究依電泳分析之結果將麵粉蛋白質組成分成六個區分,其分子量分別為第I區分:116.0 ~ 97.4 KDa、第II區分:66.2 KDa、第III區分:45.0 KDa、第IV區分:36.0 ~ 24.0 KDa、第V區分:24.0 ~ 19.7 KDa及第VI區分:19.7 ~ 6.5kDa。在麵粉之各蛋白質區分含量與水餃皮蒸煮特性相關性方面,第I、III、V及VI區分含量與水餃皮蒸煮增重率呈顯著負相關;第I區分含量與增容率呈顯著負相關;第I、III、V及VI區分含量與耗損率呈顯著負相關。在麵粉之各蛋白質區分含量與水餃皮品質相關性方面,第 I、II、III、IV及V區分含量與生水餃皮抗張強度呈顯著正相關,第II、III及IV區分含量與熟水餃皮抗張強度呈顯著正相關;第I 與V區分含量與水餃皮之Hunter b值呈顯著正相關,第VI區分含量與水餃皮白色度 (white index) 呈顯著負相關。
關鍵詞:水餃、水餃皮、化學組成、蛋白質、麵粉
Abstract
The proximate compositions (moisture, crude protein, and ash) and protein compositions of five different wheat flours were tested in this study. The cooking properties (moisture absorption rate, maximal moisture absorption, cooked weight gain, cooked volume gain, and cooking loss) and quality ( sensory evaluation scores, tensile strength and color) of dumpling crusts prepared from five different wheat flours were also measured to elucidate the relationships between the chemical compositions of wheat flours and the cooking properties and quality of dumpling crusts. The effect of the chemical compositions of different wheat flours on the cooking properties and the quality of dumpling crusts were also studied.
Five varieties of wheat, including American hard red spring (AHRS), American hard red winter (AHRW), American soft white (ASW), Australian prime hard (APW), and Canadian western red spring (CWRS) were milled into flours, and these five wheat flours were used to prepare dumpling crusts. The optimal preparation conditions of dumpling crusts were obtained from the results of the analysis of the color, texture, and ensory evaluation scores of dumpling crusts. The results showed the optimal added water was 45% of flours weight for all flours. The optimal mixing time was 10 min for all flours.
In the aspects of relationship between flour proximate compositions of five different wheat flours and cooking properties of dumpling crusts, the results showed the crude protein contents of flours were negatively correlated with the cooked weight gain and cooking loss of dumpling crusts; The relation between the moisture contents of flours and the cooked weight gain and cooking loss of dumpling crusts were the same as the crude protein contents of flours.
In the aspects of relationship between the flour proximate compositions and the quality of dumpling crusts, the crude protein content of flour were positively correlated with the tensile strength and Hunter color b values of uncooked dumpling crusts. The relation between the moisture contents of flours and the tensile strength and Hunter color b values of uncooked dumpling crusts were the same as the crude protein contents of flours.
The proteins of the flours used in this study were grouped into six fractions according to the results of protein electrophoresis. The molecular weight of the proteins in these six fractions was as follows, I: 116~97.4, II: 66.2, III: 45.0, IV: 36.0~24.0, V: 24.0~19.7, and VI: 19.7~6.5 kDa. In the aspects of relationship between the contents of protein fractions and the cooking properties of dumpling crusts, the results showed the contents of protein fractions of I, III, V, and VI were negatively correlated with the cooked weight gain of dumpling crusts. The contents of protein fractions of I was negatively correlated with the cooked volume gain of dumpling crusts. The contents of protein fractions of I, III, V, and VI were negatively correlated with the cooking loss of dumpling crusts. The results of the relationship between the contents of protein fractions and the quality of dumpling crusts showed the contents of protein fractions of I, II, III, IV, and V were positively correlated with the tensile strength of uncooked dumpling crusts. The contents of protein fractions of II, III, and IV were positively correlated with the tensile strength of cooked dumpling crusts. The contents of protein fractions of I and V was positively correlated with the Hunter color b value of dumpling crusts. The contents of protein fractions of VI was negatively correlated with the WI (white index) of dumpling crusts.
Key words: dumpling, dumpling crust, chemical composition, protein , wheat flour
目錄
頁次
封面內頁
簽名頁
授權書1 i
授權書2 ii
簽署人須知 iii
中文摘要 iv
英文摘要…………………………….……………..………………vi
誌謝 …………………………………………………………………ix
目錄 …………………………………………………………………x
圖目錄 ………………………………………………….……….…xii
表目錄 ……………………………………………………….……xiv
壹、緒論 ………………………………………….………………………………….1
貳、文獻回顧…………………………………………………………………………4
一、小麥之介紹……………………………………………………………………4
(一) 小麥之種類 ……………………………..………………4
(二) 小麥之結構………………………………………………5
(三) 小麥之物理性質…………………………………………6
(四) 小麥之製粉………………………………………………9
二、麵粉之介紹 ………………………………..………………..11
(一) 麵粉之組成成分及其性質…………...………………11
(二) 麵粉之等級 …………………………….…………………….………...13
三、麵糰之介紹 …………………………………..……………………….…….17
(一) 麵筋 …………………………………………….………………………17
(二) 澱粉 ………………………………………………….…………………22
(三) 酵素 …………………………………………………….………………23
(四) 麵糰之結構與流變性質…………………………………………24
四、麵粉之化學組成與麵條品質之相關性………………………… …..………26
參、材料與方法 …………………………………………..…………………….…..30
一、麵粉原料 …………………………….……………………………..………..31
二、藥品 …………………………………………………..………….32
三、方法………………………………………………….……………34
(一) 麵粉化學組成分析……………………………….………….34
(二) 水餃皮之製作及分析…………………...……………….………..37
(三) 水餃皮之蒸煮特性及品質分析 …...…………………40
(四) 統計分析… ……………………………………………43
肆、結果與討論……………………………………………………44
伍、結論……………………………………………………………83
參考文獻 …………………………………..………………………85
圖目錄
頁次
圖2.1麥粒之縱切與橫切圖……………………………………..…7
圖2.2 各種不同等級麵粉之關係圖……………………………..14
圖2.3 麵筋混合物之假想結構……………………………….….21
圖2.4 麵糰中小麥蛋白質之作用模式…………………………..21
圖2.5 小麥蛋白質之來源及交互作用情形………………..……22
圖2.6 小麥穀粒的電子顯微鏡剖面軟冬麥細胞剖面 。(a) 硬冬
麥細胞壁剖面(b) 軟冬麥細胞壁剖面。……….…..27
圖2.7 小麥胚乳細胞的電子顯微鏡剖面圖 。(a)硬冬麥。注意破
裂澱粉(BS)部位。(b)軟冬麥。…………………………..28
圖3.1 物性測驗使用之套頭及測試台…………………………..39
圖4.1 以含2% SDS之0.05 M磷酸鹽溶液(pH6.9)萃取所得之
五種不同麵粉蛋白質之SDS-PAGE電泳圖…………....48
圖4.2 本研究使用之麵粉樣品 (標準品、AHRS、AHRW、ASW、
APW和CWRS) 蛋白質與標準品之SDS-PAGE分析圖.49
圖4.3由五種不同麵粉以添加38、45、52% 水分及攪打7、10、
13 分鐘條件製成之水餃皮在蒸煮前之色澤品評分數…..53
圖4.4由五種不同麵粉以添加38、45、52% 水分及攪打7、10、
13分鐘條件製成之水餃皮在蒸煮後之質地品評分數….54
圖4.5由五種不同麵粉以添加38、45、52% 水分及攪打7、10、
13分鐘條件製成之水餃皮在蒸煮後之整體接受性品評分
數………………………………………………………….55
圖4.6由五種不同麵粉以添加38、45、52% 水分及攪打7、10、
13分鐘條件製成之水餃皮在蒸煮前之抗張強度……58
圖4.7由五種不同麵粉以添加38、45、52% 水分及攪打7、10、
13分鐘條件製成之水餃皮在蒸煮後之抗張強度…….59
圖4.8由五種不同麵粉以添加38、 45、 52% 水分及攪打7、10、
13分鐘條件製成之水餃皮在蒸煮前之Hunter a 值…….61
圖4.9由五種不同麵粉以添加38、45、52% 水分及攪打7、10、
13分鐘條件製成之水餃皮在蒸煮前之Hunter b
值…………………………………………………….………62
圖4.10由五種不同麵粉以添加38、45、52% 水分及攪打7、10、
13 分鐘條件製成之水餃皮在蒸煮前之Hunter L 值……63
圖4.11由五種不同麵粉製成之水餃皮其蒸煮時間對含水率的影
響……………………………………………………66
圖4.12由五種不同麵粉製成之水餃皮其蒸煮3分鐘後之增重
率………………………………………………………….67
圖4.13由五種不同麵粉製成之水餃皮其蒸煮3分鐘後之增容
率…………………………………………………….....68
圖4.14由五種不同麵粉製成之水餃皮其蒸煮3分鐘後之耗損率………………………………….……………………………………………….…69
圖4.15由五種不同麵粉製成之水餃皮在蒸煮前之色澤值…………………..…...71
圖4.16五種不同麵粉製成之水餃皮在蒸煮3分鐘後之感官品評
分數………………………………………………………..73
圖4.17由五種不同麵粉製成之水餃皮在蒸煮3分鐘前後之抗張
強度……………………………………………….….…74
表目錄
頁次
表2.1中國國家標準之麵粉分級…………………………………..15
表2.2 一般常用之麵粉規格……………………………………….16
表4.1五種不同麵粉之基本組成………………………………….45
表4.2以電泳分析法所得之五種不同麵粉蛋白質之組成(g/100g
proteins)………………….…………………….…………………………….50
表4.3以電泳分析法所得之五種不同麵粉之各種蛋白質之含
量(g/100g flours)…..….………………………………...………………….…51
表4.4五種麵粉基本組成之含量與其水餃皮蒸煮特性之相
關係數…….………………………………………………...72
表4.5五種麵粉基本組成之含量與其水餃皮品質之相關係數………………..….78
表4.6五種不同麵粉之蛋白質組成含量與其水餃皮蒸煮特性之相
關係數…………………………………………..………………..81
表4.7五種麵粉之蛋白質組成含量與其水餃皮品質之相關係
質之相數……………………………………………….………..82
參考文獻
工業局,1990,麵製品業現況調查計畫成果報告。經濟部工業局
及中華麵麥食品工業技術研究所。
中國國家標準,1979,經濟部中央標準局印行。總號 551,類號
N6002。
吳元欽,1992a,酵素在烘焙產品的應用。麵粉技術及品管研習(A)
班資料彙編。中華麵麥食品工業技術研究所編印。
吳宗沛,1992b,Farinograph與Extensograph的分析原理與二次
加工利用。麵粉技術及品管研習(A)班資料彙編。中華麵麥食品工業技術研究所編印。
林苾芬,1999,麵粉蛋白質組成與其麵糰物性之相關性。大葉工
學院食品工程研究所碩士論文。
徐華強、黃登訓、謝健一、顧德材,1974。實用麵包製作技術p.
139-140,142-143。中華麵麥食品工業技術研究所編印。台北。
郭文怡,1991,麵粉的分級及成分特性。烘焙工業35 : 45-51。
陳勉之,1975,小麥蛋白質之組成及發酵麵食的製作功能。食品
工業7(8):15-18。
黃登訓,1988,硬質白麥。烘焙工業22:35-45。
黃宏隆,郭文怡,徐華強,1995麵條加工技術。中華穀類食品工業技術研究所,台北縣。
賴滋漢、金安兒,1991,食品加工學(製品篇),p.14-18。精華
出版社,台中。
盧訓,林子清,1988,影響麵條品質質地之探究,食品科學, 18:
99-110。
盧訓,郭封谷,乳化劑和澱粉對東方式麵條品質之影響。食
品科學,18(1): 315-323。
盧榮錦,1992,麵粉的品質與分析方法。美國小麥協會發行。
AACC. American Association of Cereal Chemist. 1983. Approved
methods. AACC. St. Paul, MN.
Baik, B. K., Z. Czuchajowska and Y. Pomeranz, 1994. Role
and contribution of starch and protein contents and
quality to texture profile analysis of oriental noodles.
Cereal Chem. 71(4): 315-320.
Batey, I. L., R. B. Gupta and F. Macritchie, 1991. Use of
size-exclusion high-performance liquid chromatography in
the study of wheat flour proteins: an improved
chromatographic procedure. Cereal Chem. 68(2): 207-209.
Bean, M. M., P. M. Keagy, J. G. Fullington, F. T. Jones
and D. K. Mecham, 1974a. Dry Japanese noodles. II. Effect
of amylase, protease, salts and pH on noodle doughs.
Cereal Chem. 51: 427-434.
Bean, M. M., P. M. Keagy, J. G. Fullington, F. T. Jonesand
D. K. Mecham, 1974b. Dry Japanese noodles. I.
Properties of laboratory prepared noodle doughs from
sound and damaged wheat flours. Cereal Chem. 51: 416-
427.
Beckwith ,A. C. and J. S. Wall, 1996. Reduction and
reoxidation of wheat glutenin. Biochem. Biophys. Acta
130: 155-159.
Belitz, H. D. and W. Grosch, 1987.Cereal and
Cereal Products. Food Chemistry., Chapter 15, Spring-Verlag.
Bietz, J. A. and F. R. Huebner, 1980. Structure of gluten
:achievements at the Northern Regional Research Center.
Ann. Technol. Agric. 29: 249-253.
Bietz, J. A. and T. S. Wall, 1980. Identity of high molecular
weight gliadin and ethanol-soluble glutenin subunits of
wheat: relation to gluten structure. Cercel Chem. 57(6):
415-421.
Biliaderis, C. G., T. J. Mauric and J. R. Vose, 1980. Starch
gelatinization phenomena studied by differential
scanning calorimetry. J. Food Sci. 45: 1669-1674, 1680.
Bohlin, L. and T. L. Garlson, 1980. Dynamic viscoelastic
properties of wheat flour dough:dependence on mixing
time. Cereal Chem. 57(3): 174-177.
Bushuk, W. and C. W. Wrigley, 1971.Glutenin in developing
wheat grain. Cereal Chem. 48: 448-455.
Campos DT‚Steffe JS, Ng PKW. 1996. Mixing wheat flour and ice to form undeveloped dough. Cereal Chem. 73(1): 105-107.
Campos DT‚Steffe JS, Ng PKW.1997.Rheological behavior of
undeveloped and developed wheat dough. Cereal Chem. 74 (4):
489-494.
Chang, C. Y., P. R. Shyong and C. H. Chang, 1997. The effect
of solvent on the axtractability and the molecular size
distribution of the proteins from wheat flour.Proceedings
of the National Science Council, ROC, Part B: Life
Sciences 21(1): 26-30.
Crosbie, G. B. 1991. The relationship between starch
swelling properties, paste viscosity and boiled noodle
quality in wheat flours. J. Cereal Sci. 13: 145-150.
Crosbie, G. B., W. J. Lambe, H. Tsutsui and R. F.Gilmour
1992. Further evaluation of the flour swelling volume
test for identifying wheat potentially suitable for
Japanese noodles. J. Cereal Sci. 15: 271-280.
Danno, G. 1981. Extraction of unreduced glutenin from wheat
flour with sodium dodecyl sulfate. Cereal Chem. 58(4): 311
-313.
Dexter, J. E. and R. R. Matsuo 1978. The effect of gluten
protein fractions on pasta dough rheology and spaghetti
-making quality. Cereal Chem. 55: 44-57.
Dexter, J. E., R. R. Matsuo and B. C. Morgan 1981. High
temperature drying: Effect on spaghetti properties. J.
Food Sci. 46: 1741-1746.
Dexter, J. E., Preston, K. R., Tweed, A. R., Kilborn, R. H. and Tipples, K. H. 1985. Relationship of flour starch damage and flour protein to the quality of Brazilian-style hearth bread and remix pan bread produced from hard red spring wheat. Cereal Foods World 30(8): 511-514.
Doekes, G. J. and L. M. J. Wennekes 1982. Effect of nitrogen
fertilization on quantity and composition of flour
protein. Cereal Chem. 59(4): 276-278.
Dong, H., R. G. Seares, T. S. Cox, R. C. Hoseney, G. L.
Lookhart and M. D. Shogren 1992. Relationships between
protein, composition and mixograph and loaf
characteristics in wheat. Cereal Chem. 69(2): 132-136.
Gupta, R. B., Batey, I. L. and MacRitchie, F. 1992. Relationships between protein composition and functional properties of wheat flours. Cereal Chem. 69(2): 125-131.
Hoseney, R. C. 1986. Principle of cereal science and technology. 1st ed. St. Paul, MN: Am. Assoc. Cereal Chem. pp.3、327.
Hoseney, R. C. and J. M. Faubion 1989. The viscoelastic
properties of wheat flour doughs. In Dough Rheology &
Baked Product Texture, ed. H. Faridi & J. M. Faubion
pp. 29-66. Van Nostrand Reinhold, New York.
Hoseney, R. C. 1990.Principles of Cereal Science and
Technology. pp. 136-137. American Association of Cereal
Chemists, Inc. St. Paul, MN, USA.
Huebner, F. R. 1977. Wheat flour proteins and their
functionality in baking. Baker''s Dig. 51(5): 25, 154.
Inoue, Y. and Bushuk, W. 1992. Studies on frozen doughs. II. Flour quality requirements for bread production from frozen doughs. Cereal Chem. 69(4): 423-428.
Inoue, Y., Sapirstein, H. D., Takayanagi, S. and Bushuk, W. 1994. Studies on doughs. III. Some factors involved in dough weakening during frozen storage and thaw-freeze cycles. Cereal Chem. 71(2): 118-121.
Kasarda, D. D., J. E. Bernardun and C. C. Nimmom, 1976. Wheat
Proteins. Adv. Cereal Sci. & Technol. 1: 158-236.
Kasarda, D. D., C. C. Nimmo and G. O. Kohler 1971. Proteins
and the Amino Acid Composition of wheat Fractions. pp.
227-299. In″Wheat: Chemistry and Technology″, 2nd
ed.Y. Pomeranz. Ed. Am. Assoc. Cereal Chem. St. Paul, MN.
Kasarda, D. D., Woodard, K. M. and Adalsteins, A. E. 1998. Resolution of high molecular weight glutenin subunits by a new SDS-PAGE system incorporating a neutral pH buffer. Cereal Chem. 75(1): 70-71.
Koink, C. M., D. M. Miskelly and P. W. Gras, 1992.
Contribution of starch and nonstarch parameters to the
eating quality of Japanese white salted noodles. J. Sci.
Food Agric. 58: 403-406.
Lagoudaki, M., P. G. Demertzis and M. G. Kontominas 1993.
Moisture adsorption behaviour of pasta products.
Lebensm. Wiss. U. Technol. 26: 512-516.
L''asztity, R., Nedelkovits, J. and Varga, J. 1970. The structure of the high molecular weight protein component of gluten. Paper Presented at the IUPAC Symposium, Riga.
L’asztity, R. 1972. Recent results in cereal protein
research. Period. Polytech. (Tech. Univ. Budapest) 16: 331.
Matsuo, R. R., J. W. Bradley and G. N. Irvine 1972.
Effect of protein content on the cooking quality of
spaghetti. Cereal Chem. 49: 707-711.
Meredith, O. B. and J. J. Wren 1966.Determination of
molecular-weight distribution in wheat flour proteins by
extraction and gel filtration in a distribution medium.
Cereal Chem. 43: 169-186.
Mimouni, B., Robin, J. M., Azanza, J. -L. and Raymond, J. 1998. Wheat flour proteins: isolation and functionality of gliadin and HMW-glutenin enriched fractions. J. Sci. Food Agric. 78: 423-428.
Misskely, D. M. 1984. Flour components affecting paste
and noodle color. J. Sci Food Agric. 35: 463-471.
Misskely, D. M. and H. J. Moss, 1985. Flour quality
requirement for chinese noodle manufacture. J. Cereal
Sci. 3: 379-387.
Moss, H. J. 1971. The quality of noodles prepared from
the flours of some Australian wheat. Aust. J. Exp.
Agric. Anim. Husb. 11: 243-247.
Nagao, S., S. Imai, S. Sato, Y. Kaneko, and S. Otsub,
1976. Quality characteristics of soft wheats and
their use in Japan. I. Methods of assessing wheat
suitability for Japanese products. Cereal Chem. 53:
988-997.
Nagao, S., S. Ishibashi, S. Imai, T. Sato, T. Kenbe,
Y. Kaneko and H. Otsubo 1977. Quality characteristics
of soft wheats and their utilization in Japan. III.
Effects of crop year and protein content on product
quality. Cereal Chem. 54(2): 300-306.
Nagao, S. 1981. Soft wheat uses in the oriten. In “soft
wheat production, breeding, milling, and uses” (W. T.
Yamazaki and C. T. Greenwood, eds.), pp. 267, AACC, St.
Paul, Minnesota.
Novaro, P., M.G.D’egidio, B.M. Mariani and S.Naridi 1993.
Combined effect of protein content and high - temperature
drying systems on pasta cooking quality. Cereal Chem. 70(6):
716-719.
Oda, M., Y. Yasuda, S. Okazak, Y. Yamauchi and Y. Yokoyama
1980. A method of flour quality assessment for Japanese
noodles. Cereal Chem. 57(4): 253-254.
Oh, N. H., P. A. Seib, C. W. Deyoe and A. B. Word, 1983.
Noodle. I. Measuring the textural characteristics of
cooked noodles. Cereal Chem. 60: 433-438.
Oh, N. H., P. A. Seib, C. W. Deyoe and A. B. Ward, 1985a.
Noodles. II. The surface firmness of cooked noodles from
soft and hard wheat flours. Cereal Chem. 62(6): 431-
436.
Oh, N. H., P. A. Seib and D. S. Chung 1985b. Noodles.
III. Effect of processing variables on quality
characteristics of dry noodles. Cereal Chem.62(6):
437-440.
Osborne, T. B. 1907. The proteins of the wheat kernel. Publ.
84. carnegie Institute of Washington: Washington, D. C.
Pasaribu, S. J., Tomlinson, J. D. and McMaster, G. J. 1992. Fractionation of wheat flour by size exclusion-HPLC on an agarose-based matrix. J. Cereal Sci. 15: 121-136.
Peltonen, J. and A. Virtanen 1994. Effect of nitrogen
fertilizers differing in release characteristics on the
quantity of storage protein in wheat. Cereal Chem. 71(l): 1
-5.
Pence, J. W. and H. S. Olcott 1952. Effect of reducing agents
on gluten protein. Cereal Chem. 29: 292-296.
Pomeranz, Y. 1987. Modern Cereal Science and Technology, VCH
Publishers, Inc, U.S.A., 26-29.
Pomeranz, Y. 1988. Wheat: Chemistry and Technology Volume II﹒
pp. ll, American Association of Cereal Chemists, lnc. St, Paul, MN, U.S.A.
Rho, K. L., D. K. Chung and C. W. Deyoe, 1988. Noodles. VII.
Investigating the surface firmness of cooked oriental
dry noodles made from hard wheat flours. Cereal Chem.
65(4): 320-326.
SAS Institute, Inc. 1985. SAS User’s guide: Statistics version 5th ed. SAS Inst. Cary, NC., U.S.A.
Schoch, T. J. and D. French, 1947. Studies on bread staling.
I. The role of starch. Cereal Chem. 24: 231-249.
Shewry, P. R., A. R. Tatham, J. Forde, M. Kreis and, B.
J. Miiflin 1986. The classification and nomenclature of
wheat gluten protein: a reassessment. J. Cereal Sci. 4: 97-
106.
Singh, N. K., G. R. Donovan, I. L. Batey and F. MacRitchie
199Oa.Use of sonication and size-exclusion high-
performance liquid chromatography in the study of wheat
flour proteins. I. Dissolution of total proteins in the
absence of reducing agents. Cereal Chem. 67(2): 150-161.
Singh, N. K., G. R. Donovan and F. MacRitchie 199Ob. Use of
sonication and size-exclusion high-performance liquid
chromatography in the study of wheat flour proteins
II.Relative quantity of glutenin as a measure of
breadmaking quality. Cereal Chem. 67(2): 161-170.
Singh, N. K., K. W. Shepherd and G. B. Cornish, 1991.A simplified
SDS-PAGE procedure for seperating LMW subunits of glutenin.
J. Cereal Sci. 14: 203-208.
Stevens, H. H. 1992. Control of product quality in the mill.
麵粉場之良好作業規範研討會專輯。中華麵麥食品工業技術
研究所編印, 台北。
Tatham, A. S. and P. R. Shewry 1985.The conformation of wheat
gluten proteins. The second structure and thermal
stabilities of α-, β-, andγ-gliadins. J. Cereal Sci. 3:
103-113.
Toyokawa, H., G. L. Rubenthaler, J. R. Powers and E. G.
Shanus 1989a. Japanese noodle qualities I. Flour
components. Cereal Chem. 66: 382-386.
Toyokawa, H., G. L. Rubenthaler, J. R. Powers and E. G.
Shanus, 1989b. Japanese noodle qualities II. Starch
components. Cereal Chem. 66: 387-391.
Wall, J. S. 1979. The Role of Wheat Proteins in Determining
Baking Quality.In Recent Advances in the Biochemistry of
Cereals, ed, D.L.Laidman and R. G. W. Jonse, Academic
Press, New York.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 23) 林讚峰(1986)紅麴菌研究發展之演進,製酒科技專論彙編。4:66-77。
2. 22) 林讚峰(1986)紅麴菌次級代謝物的經濟性評估及增產策略,製酒科技專論彙編。8:81-99。
3. 21) 林讚峰(1985)紅麴菌的次級代謝-聚克呔代謝,製酒科技專論彙編。7:170-187。
4. 24) 林讚峰(1992)紅麴菌在保健食品上的新用途,食品工業月刊。24(10):41-45。
5. 19) 李福臨(2000)乳酸菌分類之研究近況,食品工業月刊。32(8):36-42。
6. 18) 李昭蓉(1997)漫談紅麴菌,食品工業月刊。29(2):33-39。
7. 17) 李秀玲、林慶福(1999)利用CGC評估微生物處理劑對於豬糞尿之脫臭效果,中國農業化學會誌。26(1):25-31。
8. 1) 丁懷謙(2000)益生菌與胃腸保健功效,食品工業月刊。32(10):1-7。
9. 25) 徐茂揮(1999)傳統紅麴及功能紅麴之研究開發與進展,食品資訊。162:14-19。
10. 29) 陳彥霖(2000)紅麴菌與高血壓,食品工業月刊。32(12):54-59。
11. 30) 陳彥霖、李昭蓉、陳建州、袁國芳(1998)紅麴菌種的研究開發與應用,食品工業月刊。30(7):1-9。
12. 36) 蘇忠楨、游義德、林志勳、劉惠群、馮玉如(1998)撒佈用微生物除臭劑對於豬糞尿主要臭氣之去除效果研究,中華農學會報。183:113-122。
13. 37) 蘇忠楨、劉惠群、吳繼芳(1998)豬舍主要臭氣成分之生物處理研究,中華農學會報。184:67-81。
 
系統版面圖檔 系統版面圖檔