(44.192.66.171) 您好!臺灣時間:2021/05/18 23:22
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:李後偉
研究生(外文):Hou-Wei Lee
論文名稱:TFT元件之模擬與分析
論文名稱(外文):A Study of Simulation and Analysis in TFT devices
指導教授:李中夏李中夏引用關係
指導教授(外文):Chung-Hsia Lee
學位類別:碩士
校院名稱:大葉大學
系所名稱:電機工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2001
畢業學年度:89
語文別:英文
論文頁數:84
中文關鍵詞:複晶矽非晶矽輕摻雜製程
外文關鍵詞:polysiliconTFTLDD
相關次數:
  • 被引用被引用:0
  • 點閱點閱:170
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
近來,複晶矽薄膜電晶體(poly-Si TFT)在應用於ULSI高密度靜態隨機存取記憶體的負載電阻和大面積主動矩陣式液晶顯示器(AM-LCD)之驅動電路方面深具潛力,故而廣受矚目。在本論文中,我們針對上電極複晶矽薄膜電晶體之製程效應及元件結構加以探討。我們研究了閘極絕緣包覆輕參雜汲極製程(GO-LDD)對於複晶矽薄膜電晶體特性所產生的影響,同時也研究了Si1-xGex化合物薄膜電晶體的特性,探討其低溫製程的優點,對於應用在顯示器驅動電路開關元件上的可行性。
首先,我們探討了電晶體結構對於其所表現出電特性的關係,實驗結果顯示採用閘極絕緣包覆輕參雜製程,對於當開關元件使用的薄膜電晶體,在漏電流方面有改善的效果,同時亦增加了元件的開關電流比。此外,新的製程方法也減少了傳統的製程步驟。
其次,我們採用其他材料取代以往的複晶矽薄膜,模擬其元件特性,藉由其低溫成膜優點,探討其他材料替代傳統高溫製程複晶矽薄膜電晶體的可行性。

Recently, poly-silicon thin film transistors have received extensive attention for their potential applications in the large-size active-matrix liquid crystal display (AMLCD) driving circuits and load resistor in the ULSI SRAM. In this thesis, we will concentrate our efforts on some novel key technologies simulation for improving top-gate poly-Si TFT performance. We proposed a gate-overlapped LDD poly-Si thin film transistor, and investigate its influence on the poly-Si device electrical performance. The simulated result shows that the leakage current of gate-overlapped LDD poly-Si TFT is reduced in OFF state, but the ON current is almost identical with that of conventional TFT, the phenomenon increases the on/off current ratio and the conventional complicated process is simplified.
Besides amorphous and poly-Si, silicon-germanium is a promising candidate for use as the channel material due to its low thermal budget requirement. Hence, we also use the SiGe thin film as the channel layer, simulation its electrical characteristic and analyze the relation between experiment parameters and simulated results

封面內頁
簽名頁
授權書……………………………………………………………………iii
中文摘要 …………………………………………………………………iv
Abstract……………………………………………………………………v
Acknowledgement…………………………………………………………vi
Contents…………………………………………………………………vii
List of Figures …………………………………………………………x
List of Tables ………………………………………………………xiii
Chapter 1 Introduction…………………………………………………1
1.1 Overview and motivation of this thesis……………………1
1.2 Organization of this thesis …………………………………3
Chapter 2 The Mechanism of TFT-Based AM-LCDs……………………4
2.1 The introduction of LCD ………………………………………4
2.1.1 LC display classification ……………………………4
2.1.2 The basic principle of LCD……………………………5
2.2 The LCD color method……………………………………………6
2.2.1 TN type color display …………………………………7
2.2.2 STN type color display…………………………………7
2.3 The LCD driving methods ………………………………………9
2.3.1 The limitation of simple matrix driving scheme.10
2.3.2 Active matrix LCD with TFT …………………………11
2.3.3 Driving scheme …………………………………………15
2.4 Problems in TFT operation……………………………………18
Chapter 3 Characteristics of Material and TFT devices………27
3.1 Overview …………………………………………………………27
3.2 TFT characteristics……………………………………………30
3.2.1 TFT current-voltage characteristics………………30
3.2.2 Parasitic effects………………………………………34
3.2.3 Threshold voltage shift………………………………36
3.3 Amorphous silicon thin film transistor …………………37
3.3.1 Regimes of operation of a-Si TFTs…………………37
3.3.2 Electrical characteristics …………………………40
3.4 Polysilicon thin film transistors…………………………43
Chapter 4 Experiment …………………………………………………49
4.1 Devices with different gate oxide thickness and gate
width/length ratio ……………………………………………49
4.2 TFTs fabrication using GO-LDD structure with different
buffer oxide thickness ………………………………………49
4.2.1 Introduction ……………………………………………49
4.2.2 Experiment ………………………………………………50
4.3 Si1-xGex TFTs with different active layer thickness…51
Chapter 5 Results and discussion …………………………………58
5.1 The influence of different channel conditions on TFT
electrical characteristics …………………………………58
5.2 ON/OFF current ratio increases with the thickness of
buffer oxide layer ……………………………………………60
5.3 The SiGe TFT performances……………………………………61
Chapter 6 Conclusion …………………………………………………80
Reference ………………………………………………………………81

[1] 陳連春編譯,「彩色液晶顯示器原理與技術」;建興出版社.
[2] Vladimir G. Chigrinov,“ Liquid Crystal Devices:Physics
and Applications”; Artech House, p.241, 1999.
[3] Michael Shur,“ Introduction to Electronic Devices "John
Wiley & Sons INC, 1995.
[4] Toshihisa Tsukada,“TFT/LCD Liquid-Crystal Displays
Addressed by Thin-Film Transistors ”; Gordon and Breach
Publishers, p.60, 1996.
[5] Carlson, D.E. and Wronski, C.R. (1976). “Amorphous silicon
solar cell”; Applied Physics Letters, 28, 671-673.
[6] Shimizu, I., Komatsu, T., Saito, K., and Inoue, E. (1980)
“a-Si thin film as a photo-receptor forelectrophotography”;
Journal of Non-Crystalline Solids, 35໼, 773-778.
[7] Kaneko, Y., Sasano, A., Tsukada, T., Oritsuki, R., and
Suzuki, K. (1986) “Improved reliability in amorphous
silicon thin-film transistors” Extended Abstracts of the
18th International Conference on Solid State Devices and
Materials (Tokyo 1986). pp. 669-702. Tokyo: The Japan
Society of Applied Physics.
[8] Powell, M.J. (1983). “Charge trapping instabilities in
amorphous silicon-silicon nitride thin-film transistors”;
Applied Physics Letters, 43, 597-599.
[9] T. Y. Huang, L. W. Wu, A. G. Lewis, A. Chiang, and R. H.
Bruce, “A simpler 100-V polysilicon TFT with improved turn
on characteristics”; IEEE Electron Device Lett,, vol.[1],
no.6, pp. 244-246, 1990.
[10] M. C. Ozturk, Y, Zhong, D, T, Grider, M. Sanganeria, J. J.
Wortman, and M. A. Littlejohn, “Selective deposition of
polycrystalline Si1-xGex by rapid thermal processing”; in
Proc. SPIE — the Int. Society for Optical Engineering, pp.
260-269, 1990.
[11] 陳熊光, 陸一民, 王文通; “低溫複晶矽薄膜電晶體液晶顯示器技
術”; 光訊 68, pp.26, 2000/10.
[12] James B. Kuo, “COMS Digital IC”; McGRAW-HILL
international editions, 1996,8.
[13] Vivek Subramanian, Krishna C. Saraswat, “Optimization of
Silicon-Germanium TFT’s Through the Control of Amorphous
Precursor Characteristics”; IEEE Transactions on
Electronic evices, VOL. 45, NO. 8, pp. 1690-1695, 1998.
[14] Tor A. Fjeldy,Trond Ytterdal,and Michael Shu
“Introduction to Device Modeling and Circuit Simulation ”
1998, John Wiley & Sons INC.
[15] R.L Weisfield , H. C. Tuan , L. Fennell , and M. J.
Thompson ,“ Amorphous Silicon Thin Films Transistors
Array Technology :Application in Printing and Document
Scanning ” , Master. Res. Soc. Symp. Proc. , Vol.95,
pp.469-474 , 1987 .
[16] M.J Thompson aand h. c. tuan , “amorphous silicon
electronic devices and their applications” , in iedm
tech. Dig. , pp192-195 , Dec. 1986.
[17] H.Aoki and E. Kigoshi, “A new semi-empirical model for
amorphous silicon thin-film-transistors ,” in Proc. 1993
Int. VPAD, pp. 138-139
[18] N. Ibaraki, M. Kigoshi , K. Fukuda and J. Kobayashi ,
“Threshold voltage instability of a-Si:H TFT’s in liquid
crystal displays , ” J. Non-Crystalline Solids , vol.
115, pp. 138-140, 1989.
[19] A.Vladimirescu and S. Liu , “The simulation of MOS
integrated circuits using SPICE2 , ” UCB/ERL M80/7 , 1980.
[20] M. S. Shur, H. C. Slade, T. Ytterdal, L. Wang, Z. Xu, K.
Aflatooni, Y. Byun, Y. Chen, M. Froggatt, A. Krishnan, P.
Mei, H. Meiling, B.-H. Min, A. Nathan, S. Sherman, M.
Stewart, and S. Theiss, Modeling and Scaling of a-Si:H and
Poly-Si Thin Film Transistors, Mat. Res. Soc. Symp. Proc.,
vol. 467, pp. 831-842 (1997)
[21] M. S. Shur, H. C. Slade, M. D. Jacunski, A. A. Owusu, and
T. Ytterdal, SPICE Models for Amorphous Silicon and
Polysilicon Thin Film Transistors, J. Electrochem. Soc.,
Vol. 144, No. 8, pp. 2833-2839, (1997).
[22] H.C. Slade and M. S. Shur, Analysis of Bias Stress on the
Performance of Unpassivated Hydrogenated amorphous Silicon
Thin Film Transistors, IEEE Trans. Electron Devices,
accepted for publication.
[23] M.S. Shur, H.C. Slade, T. Ytterdal, L. Wang, and Z.
Xu, "Modeling and Scaling of a-Si:H and Polysilicon Thin
Film Transistors," invited paper to be presented at the
Materials Research Society Spring 1997 Meeting, Amorphous
and Microcrystalline Silicon Technology, April 1997.
[24] H. C. Slade, M. S. Shur, S. C. Deane, and M. Hack, "Below
Threshold Conduction in a-Si:H TFTs With and Without a
Silicon Nitride Passivating Layer," Applied Physics
Letters, Vol. 69, No. 17, p. 2560 (October 1996).
[25] A. Owusu, M. D. Jacunski, M. S. Shur, and T. Ytterdal,
SPICE Model for the Kink Effect in Polysilicon TFTs, p.
680, in Meeting Abstracts, vol. 96-2, Fall Meeting, San
Antonio, Texas, The Electrochemical Society, New Jersey,
ISBN 0160-4619, October 6-11, 1996.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top