(44.192.112.123) 您好!臺灣時間:2021/03/04 05:19
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:劉子豪
研究生(外文):Tzu-Hau Liu
論文名稱:直接甲醇燃料電池之性能模擬
論文名稱(外文):Performance Modeling of a Directt Methanol Fuel Cell
指導教授:鄭錕燦
指導教授(外文):Kun-Tsan Jeng
學位類別:碩士
校院名稱:大葉大學
系所名稱:機械工程研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2001
畢業學年度:89
語文別:中文
論文頁數:67
中文關鍵詞:直接甲醇燃料電池燃料電池性能模擬
外文關鍵詞:Direct Methanol Fuel CellFuel CellPerformance Modeling
相關次數:
  • 被引用被引用:4
  • 點閱點閱:79
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究以直接甲醇燃料電池為研究對象,建立了直接甲醇燃料電池之理論模型,並對其進行數值模擬,藉以瞭解在不同的參數條件下(溫度、壓力、甲醇濃度),直接甲醇燃料電池其之性能變化情形。此外,本研究亦探討了各個參數對甲醇Crossover之影響。
模擬結果顯示增加溫度與壓力可有效提升燃料電池之性能,甲醇濃度亦對其性能有決定性的影響,最佳的甲醇供應濃度約為2M。在甲醇Crossover方面,增加陰極壓力、降低甲醇濃度或使用較厚的質子交換膜均可抑制甲醇之Crossover。但在高電流密度時,降低甲醇濃度或使用較厚的質子交換膜,會導致濃度過電位與歐姆過電位的增加,對燃料電池之性能產生不良的影響。
The direct methanol fuel cell (DMFC) is the focus of this thesis. Modeling and simulations are carried out with an aim to understand the influence of operational and geometrical parameters on the performance of a direct methanol fuel cell. In addition, the influence of aforementioned parameters on methanol corssover in a direct methanol fuel cell is also investigated.
The results show that increasing temperature and pressure can enhance the performance of a direct methanol fuel cell, and concentration of methanol in the feed flow plays an important role in its performance. The optimal concentration of methanol for a direct methanol fuel cell is about 2 M. Decreasing methanol concentration, increasing cathodic pressure and thickness of polymer electrolyte membrane (PEM) can all suppress methanol crossover. However, under operating condition of high current density, thick PEM and low methanol concentration will cause large ohmic and concentration overpotential, respectively.
封面內頁
簽名頁
授權書……………………………………………………………….iii
中文摘要……………………………………………………………...iv
英文摘要………………………………………………………………v
誌謝…………………………………………………………………..vi
目錄………………………………………………………………….vii
圖目錄…………………………………………………………………x
表目錄………………………………………………………………..xii
符號說明……………………………………………………………xiii
第一章 緒論…………………………………………………………1
1.1 研究動機與目的………………………………………1
1.2 燃料電池簡介…………………………………………2
1.2.1 運作原理……………………………………….2
1.2.2 燃料電池的效率……………………………….4
1.2.2.1 活化過電位………………………………4
1.2.2.2 濃度過電位………………………………4
1.2.2.3 歐姆過電位………………………………5
1.3 燃料電池的種類………………………………………5
1.4 文獻回顧………………………………………………6
第二章 研究方法…………………………………………………..13
2.1 直接甲醇燃料電池…………………………………..13
2.2 直接甲醇燃料電池之構造…………………………...14
2.3 數學模型……………………………………………...15
2.3.1 可逆電位………………………………………17
2.3.2 歐姆過電位……………………………………17
2.3.3 甲醇 crossover之過電位……………………..18
2.3.4 陽極過電位……………………………………18
2.3.4.1 陽極之統御方程式……………………...19
2.3.4.2 陽極之邊界條件………………………...21
2.3.4.3 陽極之質傳情形………………………...22
2.3.5 陰極過電位……………………………………25
2.3.5.1 陰極之統御方程式……………………...25
2.3.5.2 陰極之邊界條件………………………...27
2.3.5.3 陰極之質傳情形………………………...28
2.4 模擬方法……………………………………………...30
第三章 結果與討論………………………………………………..31
3.1 理論模型之驗證……………………………………...31
3.2 質子流密度、反應率與甲醇濃度於陽極觸媒層內之
分佈情形…………………………..………………... 31
3.2.1 不同電流密度下陽極觸媒層內之分佈情形…32
3.2.2 不同甲醇擴散係數下陽極觸媒層內之分佈情
形………………………………………………33
3.2.3 不同質子傳導係數下陽極觸媒層內之分佈情
形………………………………………………34
3.2.4 不同電子傳導係數下陽極觸媒層內之分佈情
形………………………………………………34
3.3 不同參數對直接甲醇燃料電池性能之影響………...34
3.3.1 溫度對直接甲醇燃料電池性能之影響………34
3.3.2 壓力對直接甲醇燃料電池性能之影響………35
3.3.3 甲醇濃度對直接甲醇燃料電池性能之影響…35
3.4 不同參數對甲醇Crossover之影響………………….36
3.4.1 溫度對甲醇Crossover之影響….…………….36
3.4.2 陰極壓力對甲醇Crossover之影響…….…….37
3.4.3 甲醇濃度對甲醇Crossover之影響…….…….37
3.4.4 質子交換膜厚度對甲醇Crossover之影響.….37
第四章 結論與建議…………………………………………….39
參考文獻…………………………………………………………41
附錄………………………………………………………………66
1Karl Kordesch, Gűnter Simader, “Fuel Cells and Their Applications”, VCH Verlagsgesellschaft mbH, Weinhein,1996.
2萬其超, “電化學”, 商務印書局,1992.
3鄭耀宗、徐耀昇,“燃料電池技術的現況分析”,八十八年節約能源論文發表會論文專輯,409~422,1999.
4J. Kim, S. Lee, S. Srinivasan, “Modeling of Proton Exchange Membrane Fuel Cell Performance with an Empirical Equation”, Journal of the Electrochemical Society, Vol.142 , No.8, 2670~2674,1995.
5D.Bevers, M. Wohr, K. Yasuda, K. Oguro, “Simulation of a Polymer Electrolyte Fuel Cell Electrode”, Journal of Apply Electrochemistry, Vol.27, No.11 ,1254~1264,1997.
6K. Broka, P. Ekdunge, “Modelling the PEM Fuel Cell Cathode”, Journal of Apply Electrochemistry, Vol.27, No.3, 281~289, 1997.
7D.M. Bernardi, M.W. Verbrugge, “Mathematical Model of a Gas Diffusion Electrode Bonded to a Polymer Electrolyte”, AIChE Journal, Vol.37, No.8, 1151~1163,1991.
8T.V. Nguyen, R.E. White, “A Water and Heat Management Model for Proton-Exchange-Membrane Fuel Cells”, Journal of the Electrochemical Society, Vol. 140,No.8,2178~2186,1993.
9J.J. Baschuk, X. Li, “Modelling of Polymer Electrolyte Membrane Fuel Cells with Variable Degrees of Water Flooding”, Journal of Power Sources, 86, 181~196,2000.
10P. Argyropoulos, K. Scott, W.M. Taama, “Gas Evolution and Powerperformance in Direct Methanol Fuel Cells”, Journal of Apply Electrochemistry, Vol.29, No.6, 1999.
11Tom Koppel, “Powering the Future” , John Wiley&Sons,1999.
12K. Scott, W.M. Taama, P. Argyropoulos, “Material Aspects of the Liquid Feed Direct Methanol Fuel Cell”, Journal of Apply Electrochemistry, Vol.28,1389.1998.
13A.S. Arico, P.Crety, V.Baglio, E.Modica, V.Antonucci , “Influence of Flow Field Design on the Performance of a Direct Methanol Fuel Cell”, Journal of Power Sources, 91,202~209,2000.
14T.V. Nguyen, “A Gas Distributor Design for Proton-Exchange-Membrane Fuel Cells”, Journal of the Electrochemical Society , Vol.143 , No.5, L103~L105,1996.
15Narayanan, S.R.; Kindler, A.; Jeffries-Nakamura, B.; Chun, W.; Frank, H.; Smart, M.; Valdez, T.I.; Surampudi, S.; Halpert, G.; Kosek, J.; Cropley, C. “Recent Advances in PEM Liquid-Feed Direct Methanol Fuel Cells”, Battery Conference on Applications and Advances, Eleventh Annual , 113 –122, 1996.
16J. Cruickshank, K. Scott, “The Degree and Effect of Methanol Crossover in the Direct Methanol Fuel Cell”, Journal of Power Sources, 70, 40~47,1998.
17A.Heinzel, V.M.Barragan, "A Review of the State-of-the-art of the Methanol Crossover in Direct Methanol Fuel Cells", Journal of Power Sources, 84, 70~74, 1999.
18K.Scott, W.M.Taama, J. Cruickshank, “Performance and Modelling of a Direct Methanol Solid Polymer Electrolyte Fuel Cell”, Journal of Power Sources , 65, 159~171, 1997.
19K.Scott, P.Argyropoulos, K.Sundmacher, “A Model for the Liquid Feed Direct Methanol Fuel Cell”, Journal of Electroanalytical Chemistry, Vol.477, 97~ 110, 1999.
20S.F. Baxter, V.S. Battaglia, R.E. White, “Methanol Fuel Cell Model: Anode” , Journal of the Electrochemical Society , Vol.146 , No.2, 437-447, 1999.
21John S. Newman, “Electrochemical Systems-2nd ed.” ,Prentice-Hall Inc., 1991
22Meyers, Jeremy Patrick, “Simulation and Analysis of the Direct Methanol Fuel Cell”, Ph.D. Thesis, University of California. Berkeley, 1998.
23K. Sundmacher, T. Schultz, S. Zhou, K. Scott, M. Ginkel, E.D. Gilles, “Dynamics of the Direct Methanol Fuel Cell(DMFC): Experiments and Model-Based Analysis”, Chemical Engineering Science, Vol.56, 333-341, 2001.
24T. Okada, G. Xie, M. Meeg, “Simulation for Water Management in Membranes for Polymer Electrolyte Fuel Cells”, Electrochimica Acta, Vol.43, Nos.14-15, 2141-2155,1998.
25S. Fukada, “Analysis of Oxygen Reduction Rate in a Proton Exchange Membrane Fuel Cell”, Energy Conversion and Management, Vol.42, 1121-1131, 2001.
26H. Dohle , J. Divisek, R. Jung, “Process engineering of the direct methanol fuel cell”, Journal of Power Sources , Vol.86 , 469-477, 2000.
27T.E. Springer, M.S. Wilson, S. Gottesfeld, “Modeling and Experimental Diagnostics in Polymer Electrolyte Fuel Cells”, Journal of the Electrochemical Society , Vol.140, No.12, 3513-3526, 1993.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔