(3.238.96.184) 您好!臺灣時間:2021/05/08 03:35
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:王登楷
研究生(外文):Wang, Deng-Kai
論文名稱:以高級氧化程序處理染整廢水之光反應器設計研究
論文名稱(外文):Study on the Photoreactor Design for the Treatment of Dye Wastewater by Advanced Oxidation Processes
指導教授:申永順申永順引用關係
指導教授(外文):Yung-Shuen, Shen
學位類別:碩士
校院名稱:大葉大學
系所名稱:環境工程研究所
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2001
畢業學年度:89
語文別:中文
論文頁數:264
中文關鍵詞:高級氧化程序染料廢水環狀光反應器設計方程式
外文關鍵詞:Advanced oxidation processesDye wastewaterAnnular photoreactorDesign equation
相關次數:
  • 被引用被引用:13
  • 點閱點閱:224
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:2
本研究旨在發展與建立以高級氧化程序處理染料廢水之連續環狀雙套管式光反應器設計方程式,探討模式係藉由結合光氧化系統中之反應機制、各反應成份之質量平衡方程式,以及紫外線光強度分佈模式,並經由不同反應條件(如水力停留時間、光反應器幾何尺寸、水溶液pH值、紫外線光強度及光波長等)及染料物種(如反應性染料 Reactive Red 141、酸性染料Acid Blue 62、直接染料Direct Yellow 86等)之實驗驗證,以評估光反應器設計方程式之合理性與可行性。
研究重點是以UV/H2O2及Photo-Fenton程序處理染料廢水為主題以架設整體反應系統,經由染料污染物及氧化劑質量平衡之計算,評估氧化劑及紫外線之使用效率,以做為高級氧化程序效能及操作條件之取決依據,並比較不同類型之染料污染物在各光氧化系統中反應特性的差異,從而建立光氧化程序處理染料廢水之光反應器設計方程式,以做為以光為主體之高級氧化程序未來實際商業應用研究之基礎及參考。
在UV/H2O2程序中,結合各反應成分之質量平衡方程式與無限長度光源分佈模式,所推導與建立之光反應器設計方程式,可合理模擬染料在各操作條件下之反應行為以及在光反應器內分佈情形。
The purpose of this study is to develop the design equations of an annular photoreactor for the treatment of dye wastewater by various advanced oxidation processes. The UV/H2O2 and Photo-Fenton processes are applied to treat the dye wastewater to investigate the removal characteristics of pollutants and evaluate the treatment efficiencies of AOPs. The photoreactor design equation was established by combining with the chemical kinetics of the photooxidation systems, empirical rate expression of oxidants and dye pollutants, and UV light distribution model in the photoreactor, and was used to predict the decomposition of pollutants (Reactive Red 141, Acid Blue 62, Direct Yellow 86) within photoreactor of different geometries at various operating conditions (hydraulic retention times, solution pH values, UV light intensities and wavelengths) to verify its rationality and feasibility.
The photoreactor design equation developed was found reasonablely to predict the dyes reaction behavior at various operating conditions and distribution profile within photoreactor. The results of this research can be as useful bases of the future application of the UV-based advanced oxidation processes.
授權書iii
中文摘要v
英文摘要vi
誌謝vii
目錄viii
圖目錄xii
表目錄xx
符號說明xxiii
第一章 前言1
第二章 理論背景及文獻回顧4
2.1染整廢水特性簡介4
2.1.1染料之化學結構及發色原理4
2.1.2染料之分類5
2.1.3染整廢水之來源及特性9
2.1.4一般染整廢水處理方法12
2.2光分解反應程序之理論16
2.2.1紫外線之特性及應用16
2.2.2光學基本名詞定義17
2.2.3光化學之反應理論23
2.3 UV/H2O2光解程序之反應機制與應用27
2.3.1 H2O2之一般性質27
2.3.2 UV/H2O2程序之反應機制28
2.3.3反應因子探討與應用現況36
2.4 Fenton及Photo-Fenton處理程序之反應機制與應用42
2.4.1 Fenton及Photo-Fenton反應機制42
2.4.2反應因子探討與應用現況48
2.5光化學反應模擬設計58
2.5.1光源模式之基本概念58
2.5.2光反應器之輻射場模擬62
2.5.3光化學反應器之設計76
第三章 實驗目的81
第四章 實驗程序與設備83
4.1實驗設備與儀器83
4.2實驗藥品84
4.3實驗裝置86
4.4實驗步驟88
4.4.1背景實驗90
4.4.2以UV/H2O2程序處理染料水溶液92
4.4.3以Fenton程序處理染料水溶液94
4.4.4以Photo-Fenton程序處理染料水溶液94
4.5分析測定方法95
第五章 結果與討論102
5.1背景實驗102
5.1.1染料於液相中之穩定性實驗102
5.1.2以H2O2直接分解染料水溶液實驗105
5.1.3以紫外線直接光解染料實驗105
5.2以UV/H2O2程序處理染料水溶液之反應行為111
5.2.1以UV/H2O2程序處理含Yellow 86染料水溶液之反應行為 113
5.2.2以UV/H2O2程序處理含Red 141染料水溶液之反應行為 131
5.2.3以UV/H2O2程序處理含Blue 62染料水溶液之反應行為 149
5.2.4以UV/H2O2程序處理不同染料水溶染之比較 153
5.3以UV/H2O2程序處理含染料水溶液之光反應器設計與模式推導 160
5.3.1光反應器之光分佈模式推導 160
5.3.2動力式之迴歸及模擬166
5.3.3實驗結果與驗證 173
5.4以Photo-Fenton/Fenton程序處理含反應性Red 141染料水溶液之
反應行為200
5.4.1紫外線光強度效應200
5.4.2溶液pH效應207
5.4.3染料起始濃度效應217
5.4.4 Fe2+/H2O2之莫耳濃度比效應220
5.4.5 Fe2+及H2O2進料流量比率效應223
5.4.6光反應器尺寸效應225
5.4.7不同染料之反應行為比較227
5.5以Photo-Fenton程序處理染料Red 141溶液之光反應器設計模式
推導231
5.5.1光反應器設計模式推導231
5.5.2實驗結果與驗證233
第六章 結論與建議247
6.1結論247
6.2建議250
第七章 參考資料251
附錄263
1.方長福,“染整廢水以新型反應器進行臭氧脫色研究”,碩士論文,國立台灣工業技術學院化工所,民國八十六年。
2.申永順,“以紫外光/過氧化氫程序處理含氯酚類有機溶液反應行為之研究”,碩士論文,國立台灣工業技術學院化工所,民國八十一年。
3.申永順,“以高級氧化程序處理揮發性有機污染物反應行為及光反應器設計之研究”,博士論文,國立台灣科技大學化工所,民國八十七年。
4.吳宗南,“以電解Fenton法處理染料染整廢水之可行性研究”,碩士論文,國立中央大學環境工程研究所,民國八十五年。
5.林億芳,“UV/H2O2光化學氧化法處理含酸性染料廢水之研究”,碩士論文,國立台灣大學環境工程所,民國八十三年。
6.祝德杭,“UV/H2O2系統分解水中氯苯類污染物與減毒效果之研究”,碩士論文,國立中央大學環境工程研究所,民國八十八年。
7.涂善勇,“化學混凝法探討染整廢水脫色之研究”,碩士論文,私立淡江大學水資源暨環境工程研究所,民國八十年。
8.淡江大學土木研究所,「事業廢水特性調查與分類」,行政院環保署委託研究報告,民國八十年。
9.陳姍玗、簡良榮、張嘉修、陳博彥,“以混合菌相進行廢水褪色之生態工程研究”, 第二十五屆廢水處理技術研討會論文集,pp. 6-11,民國八十九年。
10.黃汝賢,“最佳化活性污泥系統處理Direct Red 13染料製程廢水”,第十四屆廢水處理技術研討會論文集,pp. 399-413,民國七十八年。
11.黃全億,“臭氧在捲器攪拌槽中對染料水溶液之脫色及臭氧利用率之研究”,碩士論文,國立台灣工業技術學院化工所,民國八十三年。
12.詹益臨,“Fenton法處理染整原廢水及其污泥回收之研究”,碩士論文,私立淡江大學水資源暨環境工程研究所,民國八十二年。
13.廖志祥,康世芳,洪鴻斌,柏雪翠,“使用UV/H2O2高級氧化程序處理難分解染料製程廢水”,第二十二屆廢水處理技術研討會論文集,pp. 163-170,民國八十六年。
14.魏漣邦、張敏超、楊耿豪、許楹昇,“化學混凝脫色最佳組合劑量之研究”,第二十五屆廢水處理技術研討會論文集,pp. 674-678,民國八十九年。
15.經濟部環保署工業減廢聯合輔導小組,「工業減廢技術手冊1-染整工業」,第20-43頁,民國八十二年。
16.經濟部環保署工業減廢聯合輔導小組,「工業減廢技術手冊4-染整工業」,第21-23頁,民國八十四年。
17.Akehata, T. and Shirai, T., (1972) “Effect of Light-Source Characteristics on the Performance of Circular Annular Photoreactor”, Journal Chem. Eng. Japan, 5, 358-391.
18.Akehata, T., Shiral, T., Ishizoki, N. and Ito, K., (1973) “Average Light Intensity in an Annular Photochemical Reactor”, Kag. Kog., 37, 1026-1031.
19.Alfano, O. M., Romero, R. L. and Cassano, A. E., (1984) “Radiation Field Inside a Cylindrical Photoreactor Irradiation From the Bottom”, Chem. Eng. Rea., 1, 506-522.
20.Alfano, O. M., Romero, R. L. and Cassano, A. E., (1986) “Radiation Field Modelling in Photoreactor Homogeneous Media”, Chem. Eng. Sci., 41, 3, 421-444.
21.Andreozzi, R., Caprio, V., Insola, A. and Marotta, R., (2000) “The Oxidation of Metol in Aqueous Solution by UV/H2O2 Photolysis”, Wat. Res., 34, 2, 463-472.
22.Balanosky, E., Herrera, F., Lopez, A. and Kiwi, J., (2000) “Oxidative Degradation of Textile Waste Water, Modeling Reactor Performance”, Wat. Res., 34, 2, 582-592.
23.Bandara, J., Morrision, C., Kiwi, J., Pulgarin, C. and Peringer, P., (1996) “Degradation/Decoloration of Concentrated Solutions of Organe II, Kinetic and Quantum Yield for Sunlight Induced Reactions Via Fenton Type Reagents”, Journal of Photochemistry and Photobiology, 99, 57-66.
24.Bandini, E., Stramigioli, C. and Santarelli, F., (1977) “A Rigous Approach to PhotoChemical Reactor”, Chemical Engineering Science, 32, 89-96.
25.Beltràn, F. J., Ovejero, G. and Rivas, J., (1996) “Oxidation of Polynuclear Aromatic Hydrocarbons in Water, UV radiation Combined with Hydrogen Peroxide”, Ind. Eng. Chem. Res., 35, 4, 883-890.
26.Benitez, P. S., Heredia, B. J., Gonzalez, T. and Pascual, A., (1993) “Ozone Treatment of Methylene Blue in Aqueous Solutions”, Chem. Eng. Commum., 119, 151-165.
27.Blystone, P. G., Johnson, M. D., Haag, W. R. and Daley, P. F., (1991) “Advanced Ultraviolet Flash Lamps for the Destruction of Organic Contaminants in Air”, ACS sys., Atlanta, Georgia, October.
28.Bolton, J. R., (1999) “Calculation of Ultraviolet Fluence Rate Distributions in an Annular Reactor: Significance of Refraction and Peflection”, Wat. Res., 34, 13, 3315-3324.
29.Chu, W. and Ma, C. W., (1998) “Reaction Kinetic of UV-Decolourization for Dye Materials”, Chemosphere, 37, 5, 961-974.
30.Colonna, G. M., Caronna, T. and Marcandalli, B., (1998) “Oxidative Degradation of Dyes by Ultraviolet Radiation In Presence of Hydrogen Peroxide”, Dyes and Pigments, 41, 221-220.
31.Cooper, W. J., Zika. R. G., Petasne, R. G. and Plane, J. M., (1988) “Photochemical Formation of H2O2 in Natural Water Exposed to Sunlight”, Environ. Sci. Tech., 22, 1156.
32.Costa, J. and Vall, F., (1972) “Analysis Calculation Reactor Tubular Photochemicals” Quim. Indust., 18, 11-15.
33.Costa, J. and Esplugas, S., (1977) “Photoreactor Annular Continuous Mixed Perfect”, Ing. Quim., 100, 89-95.
34.De Leet, J., Berger, P., Poinot, T., Karpel Vel Leitner, N. and Doré, M., (1995) “Modelling the Oxidation of Organic Compounds by UV/H2O2, Estimation of Kinetic Parameters”, Proceeding of 12th Ozone World Congress, France.
35.Dhananjeyan, M. R., Fernadez, J. and Kiwi, J., (2000) “Evidence for Fenton Photoassisted Process Mediated by Encapsulated Fe ions at Biocompatible pH Values”, J. Phys. Chem. B, 104, 5298-5301.
36.Doedo, C. M. and Walker, C. A., (1955) “Photochemical Engineering”, Chemical Engineering, 32.
37.Dolan, W. J., Dimon, C. A. and Dranoff, J. S., (1965) “Dimensional Analysis in Photochemical Reactor Design”, AIChE. Journal, 11, 1000-1005.
38.Dworkin, D. and Dranoff, J. S., (1978) “Free Radical Transport in a Photochemical Reactor”, AIChE. Journal, 24, 1134-1137.
39.Feng, W., Nansheng, D. and Yuegang, Z., (1999) “Discoloration of Dye Solutions Induced by Solar Photolysis of Ferrioxalate in Aqueous Solutions”, Chemosphere, 39, 12, 2079-2085.
40.Fernandez, J., Bandara, J., Lopez, A., Buffat, P. and Kiwi, J., (1999) “Photoassisted Fenton Degradation of Nonbiodegradable Azo Dye(Orange II) in Fe-Free Solutions Mediated by Cation Transfer Membranes”, Langmuir, 15, 185-192.
41.Foraboschi, F. P., (1959) “Conversion in a Reactor Photochemical Continuous”, Chem. Ind., 41, 731-737.
42.Fujihire, M., Satoh, Y. and Osa, T., (1982) “Heterogeneous Photocatalytic Reaction on Semiconductor Materials. II Effect of pH and Cu2+ Ions on the Photo-Fenton Type Reaction”, Bull. Chem. Soc., Jpn, 55, 666.
43.Funayama, H., Ogiwara, K., Sugawara, T. and Ohashi, H., (1977) “Light Intensity Profiles in Photoreactors Applied by a Low Pressure Mercury Lamp”, Kag. Kog. Ron., 3, 354-358.
44.Gaertner, R. F. and Kent, J. A., (1958) “Conversion in a Continuous Photochemical Reactor”, Ind. Eng. Chem., 50, 1223-1226.
45.Galindo, C. and Kalt, A., (1999) “UV/H2O2 Oxidation of Azodyes in Aqueous Media: Evidence of a Structure-Degradability Relationship”, Dyes and Pigments, 42, 199-207.
46.Gebhard, T. J., (1978) Ph.D. Thesis, Northwestern University, Evanston, Illinois.
47.Ghosh, M. M. and Woodard, F. E., (1977) “Treatmentability Studies and Design Consideration for a Textile Mill Wastewater”, Proceeding of the 32th Industrial Waste Conference, 663-673.
48.Glaze, W. H., Kang, J. W. and Chapin, D. H., (1987) “The Chemistry of Water Treatment Processes Involving Ozone, Hydrogen Peroxide and Ultraviolet Radiation”, Ozone Sci. Eng., 9, 335-352.
49.Glaze, W. H. and Lay, Y., (1989) “Oxidation of 1,2-D-3-Chloropropane Using Advanced Oxidation Processes”, In 9th IOA Ozone World Conference, New York.
50.Guittonneau, S., De Laat, J., Doré, M., Duguet, J. P. and Bonnel, C., (1987) “Etude de la Degradation de Qoelques Composes Organochlorés Volatils Par Photolyse du Peroxide D’Hydrogéne en Milieux aqueux”, Revue. Des. Sci., 1, 35.
51.Harada, J., Akehata, T. and Shirai, T., (1971) “Light Intensity Distribution in an Elliptical Photoreactor”, Kag. Kog., 35, 233-239.
52.Harris, P. R. and Dranoff. J. S., (1965) “A Study of Perfectly Mixed Photochemical Reactors”, AIChE. Journal, 11, 497-502.
53.Henle, E. S., Luo, Y. and Linn, S., (1996) “Fe2+, Fe3+, and Oxygen React with DNA- Derived Radicals Formed During Iron-Mediated Fenton Reactions”, Biochemistry, 35, 12212-12219.
54.Hill, F. B. and Felder, R. M., (1965) “Effects of Mixing on Chain Reactions in Isothermal Photoreactors”, AIChE. Journal, 11, 873-885.
55.Hone, H. J. and Schulte, P., (1991) “Evalution of the UV/H2O2 Process for the Oxidation of Hazardous Waste Media on Industrial Effluents and Process Water”, ACS Sym., Atlanta, Georgia, Oct., 1-3.
56.Horning, R. H., (1997) “Characterization and Treatment of Textile Dyeing Wastewater”, Textile Chemist and Colorist, 9, 4, 24-27.
57.Ince, N. H., (1999) “Critical Effect of Hydrogen Peroxide in Photochemical Dye Degradation”, Wat. Res., 33, 4, 1080-1084.
58.Jacob, S. M. and Dranoff, J. S., (1968) “Design and Analysis of Perfectly Mixed Photochemical Reactors”, Chem. Eng. Prog. Sym. Ser., 64, 54-63.
59.Jacob, S. M., and Dranoff, J. S., (1966) “Radial Scale-up of Perfectly Mixed Photochemical Reactors”, Chem. Eng. Prog. Symp. Ser., 62.
60.Jacob, S. M. and Dranoff, J. S., (1970) “Light Intensity Profiles in an Elliptical Photoreactor”, AIChE. Journal, 16, 359-363.
61.Jain, R., Graessley, W. W. and Dranoff, J. S., (1971) “Design and Analysis of a Photoreactor for Styrene Polymerization”, Ind. Eng. Chem. Prod. Res., 10, 293-298.
62.Jones, B. M., Langlois, G. W. and Sakaji, R. H., (1985) “Effect of Ozonation and UV Irradiation on Biorefractory Organic Solutes in Oil Shale Retort Water”, Environ. Prog., 4, 252.
63.Joseph, J. M., Destaillats, H., Hung, H. M. and Hoffmann, M. R., (2000) “The Sonochemical Degradation of Azobenzene and Related Azo Dyes: Rate Enhancements Via Fenton’s Reactions”, J. Phys. Chem., 104, 301-307.
64.Judkins, J. F. and Hornsby, J. S., (1973) “Color Removal from Textile Dye Waste Using Magnesium Carbonate”, Journal of the American Society, 100, 7, 2987-2991.
65.Kang, S. F., Liao, C. H. and Po, S. T., (2000) “Decolorization of Textile Wastewater by Photo-Fenton Oxidation Technology”, Chemosphere 41, 1287-1294.
66.Linden, K. G., Soriano, G. S. and Dary, J. L., (1998) “Investigation of Disinfection By-product Formation Following Low and Medium Pressure UV Irradiation of Wastewater”, Disinfection '98 The Latest Trends in Wastewater Disinfection: Chlorination vs UV Disinfection, 137-147.
67.Lunar, L., Sicilia, D., Rubio, S., Perez-Bendito, D, and Nickel, U., (2000) “Degradation of Photogradation Developers by Fenton’s Reagent: Condition Optimization and Kinetic for Metol Oxidation”, Wat. Res., 34, 6, 1791-1802.
68.Magelli, F. and Santarelli, F., (1978) “The Modelling of Batch Photoreactors”, Chem. Eng. Sci., 33, 611-614.
69.Malaiyandi, M., Sadar, M. H., Lee, P. and O’Grady, R., (1980) “Removal of Organics in Water Using Hydrogen Peroxide in Presence of Ultraviolet Light”, Wat. Res., 14, 1131-1134.
70.Marechal, A. M. and Slokar, Y. M., (1997) “Decoloration Of Chlorotriazine Reactive Azo Dyes with H2O2/UV”, Dyes and Pigments, 33, 4, 281-298.
71.Markl, H. and Vortmeyer, D., (1971) “Exact Calculation of the Absorption Profile in an Externally Lighted Cylinder”, 2nd Int. Cong. on Photosynthesis, Stresa.
72.Matsuura, T. and Smith, J. M., (1970) “Light Distribution in Cylindrical Photoreactors”, AIChE. Journal, 15, 321-324.
73.Milano, J. C., Escallon, B. and Vernet, J. L., (1990) “Photolysis of 1,2-Dibromo 3-Chloro Propane in Water”, Wat. Res., 24, 5, 557.
74.Nadtochenko, V. A., Gak, V. Y. and Kiwi, J., (1998) “Tripley-Excited Dye Molecules(Eosine and Methylene Blue)Quenching by H2O2 in Aqueous Solutions”, Journal of Photochemistry and Photobiology, Chemistry 116, 57-62.
75.Nansheng, D., Feng, W., Fan, L. and Zan, L., (1997) “Photodegradation of Dyes in Aqueous Solutions Containing Fe(II)-Oxalato Complexes”, Chemosphere, 35, 11, 2697-2706.
76.Nansheng, D., Fneg, W., Fan, L. and Mei, X., (1998) “Ferric Citrate-Induced Photodegradation of Dyes in Aqueous Solutions”, Chemosphere, 36, 15, 3101-3112.
77.Ogata, Y., Tomizawa, K. and Takagi, K., (1981) “Photo-Oxidation of Formic, Acetic and Propionic Acids with Aqueous Hydrogen Peroxide”, Can. J. Chem., 59, 14.
78.Pasquali, G. and Santarelli, F., (1978) “Radiant Energy Trandfer in Batch-Photoreacting Media”, Chem. Eng. Commun., 2, 271-274.
79.Perkowski, J., Kos, L. and Ledakowicz, S., (1999) “Advanced Oxidation of Textile Wastewaters”, Ozone Science & Engineering, 22, 535-550.
80.Peyton, G. R., Smith, M. A. and Peyton, B. M., (1987) “Photolytic Ozonation for Protection and Rehabilitation of Groundwater Resources: A Mechanistic Study”, University of Illinois Water Resources Center, Research Report, 206.
81.Pignatello, J. J., (1992) “Dark and Photoassisted Fe3+-Catalyzed Degradation of Chlorophenoxy Herbicides by Hydrogen Peroxide”, Environ. Sci. and Tech., 26, 944-951.
82.Prengle, H. W. and Mark, C. E., (1978) “New Technology: Ozone/UV Chemical Oxidation Wastewater Process for Metal Complexes, Organic Species and Disinfection”, AIChE Sym. Ser., 74, 178-228.
83.Roger, M. and Villermaux, J., (1983) “Modelling of Light Absorption in Photoreactors, Density Profile and Efficiency of Light Absorption in a Cylindrical Reactor and Experimental Comparison of Five Models”, Chem. Eng. Journal, 26, 85-93.
84.Romero, R. L., Alfano, O. M., Marchetti, J. L. and Cassano, A. E., (1983) “Modelling and Parametric Sensituvity of an Annular Photoreactor with Complex Kinetic”, Chem. Eng. Journal, 26, 85-93.
85.Santarelli, F. and Stramigioli, C., (1975) “Effect of the Light Model on Conversion in a Tubular Photoreactor”, Ing. Chim. Ital., 11, 63-68.
86.Schechter, R. S. and Wissler, E. H., (1960) “Photochemical Reactions in an Isothermal Laminar-Flow Chemical Reactor”, Appl. Sci. Res., 9, 334-344.
87.Scheytt, H., Emig, G. and Oetzmann, H., (1994) “Photoinduced Oxidation of Chlorinated Hydrocarbons in the Gas Phase”, The First International Conference on Advanced Oxidation Technologies for Water and Air Remediation, London, Ontario, Canada, June 25-30.
88.Shriver, L. E. and Daugue, R. R., (1978) “Dye Waste Treatment and Reuse”, American Dyestuff Reporter, 67, 3, 34-50.
89.Sillet, A., Touraud, E., Roussy, Bourgois, J. and Thomas, O., (2000) “Colour Removeal of Azo Dyes by Advanced-Oxidation Process”, 719-726.
90.Spadoni, G., Bandini, E. and Santarelli, F., (1980) “Rigorous and Simplified Approach to the Modelling of Continuous Photoreactors”, Chem. Eng. Sci., 35, 925-931.
91.Stramigioli, C., Santarelli, F. and Foraboschi, F. P., (1975) “Photosensitized Reactions in an Annular Photoreactor”, Ing. Chim. Ital, 11, 143-147.
92.Stramigioli, C., Spadoni, G. and Santarelli, F., (1983) “The Role of a Reflecting Boundary in Improving the Operation of an Annular Photoreactor”, Int. Journal Heat Mass Transfer, 26, 539-544.
93.Sugawara, T., Tadaki, T. and Maeda, S., (1973) “The Photochlorination of Chloroform in Flow Reactors”, Kag. Kog., 2, 304-309.
94.Suidan, M. T. and Severin, B. F., (1986) “Light Intensity Models For Annular UV Disinfection Reactors”, AIChE. Journal, 32, 11, 1902-1909.
95.Tang, W. Z. and Chen, R. Z., (1996) “Decolorization Kinetic and Mechanisms of Commerical Dyes by H2O2/Iron Power System”, Chemosphere, 32, 5, 947-958.
96.Trazoqui, H. A., Cerdá, J. and Cassano, A. E., (1973) “Radiation Profiles in an Empty Annular Photoreactor with a Source of Finite Spatial Dimensions”, AIChE. Journal, 19, 460-467.
97.Tuhkanen. T., (1999) “Oxidative Treatment of Simulated Dyehouse Effluent by UV and Near-UV Light Assisted Fenton’s Reagent”, Chemosphere, 39, 15, 2767-2783.
98.Verhoeven, J. W., (1996) “Glossary of Terms Used in Photochemistry”, Pure Appl. Chem., 68, 2223-2286.
99.Weir, B. A., Sundstrom, D. W. and Klei, H. E., (1987) “Desturction of Benzene by Ultraviolet Light-Catalyzed Oxidation with Hydrogen Peroxide”, Hazardous Waste and Hazardous Materials, 4, 2, 165.
100.Williams, J. A. (1970), “The Radial Light Intensity Profile in Cylindrical Photoreactors”, AIChE. Journal, 24, 335-338.
101.Williams, J. A. and Yen, H. C., (1973) “The Incident Wall Intensity in Elliptical Reflector-Photoreactors”, AIChE. Journal, 19, 862-863.
102.Williams, J. A., (1978) “The Radial Light Intensity Profile in Cylindrical Photoreactors”, AIChE. Journal, 24, 335-338.
103.Yokota, T., Iwano, T. and Tadaki, T., (1976) “Light Intensity in an Annular Photochemical Reactor”, Kag. Kog., 2, 298-303.
104.Yokota, T., Sugimori, H., Maita, K. and Tadaki, T., (1983) “Light Absorption Rate in an Annular Photochemical Reactor”, Kag. Kog., 9, 339-341.
105.Zhao, J., Wu, K., Xie, Y. and Hidaka, H., (1998) “Photo-Fenton Degradation of a Dye Under Visible Light Irradiation”, Journal of Molecular Catalysis, Chemical 144, 77-84.
106.Zolner III, W. J. and Williams, J. A., (1971) “Three-Dimensional Light Intensity Distribution Model for an Elliptical Photoreactor”, AIChE. Journal, 17, 502-503.
107.Zolner III, W. J. and Williams, J. A., (1972) “The Effect of Angular Light Intensity Distribution on the Performance of Tubular Flow Photoreactors”, AIChE Journal, 18, 1189-1195.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊
 
系統版面圖檔 系統版面圖檔