(3.239.159.107) 您好!臺灣時間:2021/03/08 19:54
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:鄭建民
研究生(外文):Cheng Chien Min
論文名稱:廢PU泡綿再利用研究
論文名稱(外文):Recycling of waste flexible polyurethane foam
指導教授:吳照雄
學位類別:碩士
校院名稱:大葉大學
系所名稱:環境工程研究所
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2001
畢業學年度:89
語文別:中文
論文頁數:160
中文關鍵詞:聚氨基甲酸乙酯醇解反應產物分析反應動力純化
外文關鍵詞:PolyurethanePUglycolysisproducts analysiskineticpurifying
相關次數:
  • 被引用被引用:1
  • 點閱點閱:2942
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
聚氨基甲酸乙酯(PU)的使用與日俱增,經使用後的處理與處置問題,愈來愈受重視。廢PU的主要處理方法有掩埋處理法、資源回收法、物質回收法及化學處理回收法等。而就化學處理回收法來說,廢PU泡綿經由添加化學物質,在適當的觸媒催化及反應條件下產生化學反應,反應後可得到PU的原料或初級石化原料。醇解反應(glycolysis)為化學處理回收法之一種,影響醇解反應的因素有溶劑的種類及濃度、觸媒配方及反應條件的控制。有鑑於此,本研究探討上述因素對PU醇解過程及產物性質的影響,以做為實廠設計之參考資料。
本研究採用的樣品為軟質PU泡綿,以添加不同配比的化學反應劑及觸媒,在常壓及恆溫下進行醇解反應。實驗使用的反應劑為二甘醇(DEG)
,觸媒為醋酸鉀(CH3COOK),反應溫度為220℃。醇解產物性質分析項目包括氫氧基值、重量平均分子量、黏度及PU泡綿中-NCOO-官能基的轉化率。研究結果顯示,以DEG / PU= 150%,KAc / PU = 1%,反應時間90 min為適當反應配比、觸媒濃度及反應時間。在純化研究中發現,第二階段蒸餾(氣相溫度245~260℃)之餾出物比例最高,其氫氧基值與DEG者接近。從DEG添加量、-NCOO-轉化率、觸媒濃度及反應時間的分析結果,
得到適當反應配比及觸媒濃度(DEG / PU = 150%,KAc / PU = 1%)下之反應動力式可表示為:dX/dt=0.014×(1-X)3.71×(KAc)0.6×(DEG)1.12,其決斷係數為0.8202,表示反應動力式是可接受的。

The treatment of waste polyurethanes (PU) is more and more important, as the application of PU is steadily on the increase. The major methods for treating waste PU include landfill, energy recovery, material recycling, and chemicals recycling etc. The chemicals recycling is the chemical conversion of waste PU into the raw materials of PU or primary petrochemicals by the adequate choice of reagents and catalysts in the chemical glycolysis conditions. Glycolysis is one of the principal methods in chemicals recycling. The factors that affect the glycolysis of PU include the types of solvent and catalyst, the concentrations of solvent and catalyst and the reaction time. In this study, the glycolysis of PU is investigated to provide the useful data for the design of a pilot scale plant.
The study for the glycolysis of flexible PU foam are carried out at various formulas consisted of reagent and catalyst. The experiments are performed under the atmospheric pressure and isothermal condition (220℃). Diethylene glycol (DEG), potassium acetate (CH3COOK) are used as the solvent and catalyst, respectively. The properties of glycolysis products such as hydroxyl value, mass mean molecular weight, viscosity and the conversion of the -NCOO- functional group in PU are analyzed with different experimental conditions. The results indicate that the concentrations with DEG/PU = 150%, KAc/PU = 1%, and the reaction time = 90 min are the best ratio of solvent and polyurethane, the concentration of catalyst, and the reaction time, respectively. The amounts of the distillate in the second stage distillation (gas-phase temperature 245 ~ 260 ℃) are about 13.4 ~ 43.78% under the experimental conditions. Since the hydroxyl value of the distillate obtained from the second stage distillation is closed to that of the DEG. The recycling of PU by the glycolysis will be attractive. The conversion of -NCOO- functional group in PU at the optimum formula (DEG/PU = 150% and KAc/PU = 1%) can be expressed by the total rate equation, dX/dt = 0.014 × (1-X) 3.71 × (KAc) 0.6×(DEG) 1.12. The proposed kinetic model can be accepted with the coefficients of determination 0.8202.

第一章 緒 論..................................................1
1.1前言..................................................1
1.2研究目的與內容........................................4
第二章 文獻回顧...............................................6
2.1 PU泡綿之介紹.........................................6
2.2 PU之組成及製造.......................................7
2.2.1 異氰酸酯.........................................8
2.2.2 多元醇...........................................9
2.2.3 添加物..........................................10
2.3 PU泡綿之回收技術....................................11
2.4 PU泡綿醇解之反應機制................................13
2.5 PU泡綿之醇解及相關研究..............................14
2.5.1 軟質PU泡綿醇解反應..............................16
2.5.2 硬質PU泡綿醇解反應..............................20
2.5.3 其他PU泡綿相關研究..............................21
2.6 產物的純化..........................................31
2.7 研究方向............................................32
第三章 實驗設備與方法........................................34
3.1 實驗設備............................................34
3.1.1 醇解實驗........................................34
3.1.2 純化實驗........................................34
3.2 實驗樣品及藥品......................................36
3.3 實驗步驟............................................36
3.3.1 軟質PU泡綿醇解步驟..............................36
3.3.2 醇解產物之純化步驟..............................38
3.4 分析方法與分析設備..................................39
3.4.1 樣品水分含量之分析..............................39
3.4.2 樣品粒徑分佈之分析..............................40
3.4.3 元素分析........................................41
3.4.4 重金屬分析......................................42
3.4.5 氫氧基值之分析..................................42
3.4.6 膠體滲透色層分析................................45
3.4.7 Fourier轉換紅外線光譜分析.......................48
3.4.8 黏度分析........................................49
第四章 結果與討論............................................51
4.1 實驗結果............................................51
4.2 操作條件對產物性質的影響............................65
4.2.1 反應時間對醇解之影響............................65
4.2.2 反應劑DEG對醇解之影響...........................73
4.2.3 觸媒KAc對醇解之影響.............................78
4.3 醇解產物之純化......................................85
4.4 醇解反應動力模式之建立..............................93
4.4.1 動力方程式推導..................................93
4.4.2 反應模式與實驗值之比較..........................96
第五章 結論與建議...........................................111
5.1 結論...............................................111
5.2 建議...............................................111
參考文獻....................................................113
附錄A:KAc濃度不為0時之反應動力方程式.......................117
附錄B:包含KAc濃度為0時之反應動力方程式.....................121

1. Atanasov, VI., Troev, K., Tsevi, R., Grancharov, G., and
Tsekova, A.,“Chemical Degradation of Polyurethanes.
Degradation of Microporous Polyurethane Elastomer by
Dimethyl Phosphonate, ” Polymer Degradation and Stability,
67, 159-165 (2000).
2. Borda, J., Pasztor, G., and Zsuga, M., “Glycolysis of
Polyurethane Foams and Elastomers,” Polymer Degradation and
Stability, 68, 419- 422 (2000).
3. Frulla, F. F., Odinak, A., and Sayiry, A. A. R.,
“Conversion of Scrap Polyurethane Foam to Polyol,” U. S.
Patent Number 3,738,946 (1973).
4. Gassan, M., Naber, B., and Neiss, V., “Preparation of
Recyclate Polyols, and the Use Thereof in the Preparation of
Patent Number 5,357,006 (1994).
5. Gerlock, J. L., Mahoney, J., Mahoney, L. R., and Ferris, F.
O., “Reaction of Polyurethane Foam with Dry Steam: Kinetics
and Mechanism of Reactions,” Journal of Polymer Science,
18, 541-557 (1980).
6. Hopper, F. G., Parrinello, G., Parfondry, A., and Kroesen,
D. I. K. W., “Recent Developments in the Chemical Recycling
of Flexible Polyurethanes, ” Cellular Polymers, 11 (5), 388-
396 (1992).
7. Kerscher, J., Schwager, H., RaBhofer, W., and Pfefferkorn,
R., “Chemical Recycling of an All-PU Instrument Panel-
Industrial Realisation, ” Utech, 1-10 (1996).
8. Kinoshita, O., “Process for Decomposition of a Polyurethane
Resin, ” U. S. Patent Number 3,632,530 (1972).
9. Kondo, O., Hashimoto T., and Hasegawa, H., “Process for
Obtaining a Polyol-Containing Homogeneous Liquid Composition
Useful for the Production of Rigid PU Foam from a Rigid PU
Foam,” U. S. Patent Number 4,014,809 (1977).
10. Machado, R. M., Mitchell, J. W., Bullock, J. P., and
Farrell, B. E., “Kinetics of the Reaction of 4, 4’-
methylenedianiline with Propylene Oxide in Ethylene
Glycol,” Thermochimica Acta, 177-187 (1996).
11. Mahoney, L. R., Weiner, S. A., and Ferris, F. C.,
“Hydrolysis of Polyurethane Foam Waste,” Environmental
Science and Technology, 8 (2), 135-139 (1974).
12. Modesti, M., Simioni, F., Munari, R., and Baldoin, N.,
“Recycling of Flexible Polyurethane Foams with a Low
Aromatic Amine Content,” Reactive and Functional Polymers,
26, 157-165 (1995).
13. Niederdellmann, G., Roemer, N., Schenk, J., Hetzel, H., and
Grigat, E., “Process for Separating Polyurethane
Hydrolyzates into Polyether and Diamine,” U. S. Patent
Number 4,399,236 (1983).
14. Parrinello, G., Collins F., Thorpe D., and Verhelst, G.,
“Recycling of Flexible Foam,” U. S. Patent Number
5,691,389 (1997).
15. Ricardo, J. C., Salvador, G., Ricardo, E. S., and Miguel,
G., “Spectrophotometric Determination of Carbaryl by on-
lion Elution After its Preconcentration onto Polyurethane
Foam,” Talanta, 52, 717-725(2000).
16. Robert, E., Eric, B., Shi, C. M., and Karmana, E.,
“Formation of Fluoroether Polyurethane in CO2,” Journal
of Supercritial Fluids, 127-134 (1998).
17. Saunders, J. H. and Frisch, K. C., “Polyurethanes
Chemistry and Technology, Part I. Chemistry,” in High
Polymers, ed. H. Mark, P. J. Flory, C. S. Marvel and H. W.
Melville, 文京圖書,(1977a)。
18. Saunders, J. H. and Frisch, K. C., “Polyurethanes
Chemistry and Technology, Part II. Technology, ” in High
Polymers, ed. H. Mark, P. J. Flory, C. S. Marvel and H.
W.Melville, 文京圖書,(1977b)。
19. Scheirs, J., “Recycling of Polyurethanes, ” in Polymer
Recycling, John Wiley and Sons, UK., 355-359 (1998).
20. Sheratte, M. B., “Process for Converting the Decomposition
Products of PU and Novel Compositions Thereby Obtained,” U.
S. Patent Number 4,110,266 (1978).
21. Simioni, F. and Bisello, S., “Polyol Recovery from Rigid
PU Waste,” Cellular Polymers, 2, 281-293 (1983).
22. Troev, K., Grancharov, G., and Tsevi, R., “Chemical
Degradation of Polyurethanes. Degradation of Microporous
Polyurethane Elastomer by Diethyl Phosphonate and Tris(1-
methyl-2-hloroethyl) Phosphate,” Polymer Degradation and
Stability, 70, 43-48(2000a).
23. Troev, K., Grancharov, G., Tsevi, R., and Tsekova, A., “A
Novel Approach to Recycling of Polyurethanes: Chemical
Degradation of Flexible Polyurethane Foams by Trithyl
Phosphate,” Polymer, 41, 7017-7022 (2000b).
24. Tucker, B. and Ulrich, H., “Novel Process of Reclaiming
Polyurethane Foam,” U. S. Patent Number 3,983,087 (1976).
25. Ulrich, H., Tucker, B., Odinak, A., and Gamache, A. R.,
“Recycling of Thermoset Polyurethane Elastomer,” Journal
of Elastomers and Plastics, 11, 208-212 (1979).
26. Van der Wal, H. R., “New Chemical Recycling Process,”
Journal of Reinforced Plastics and Composites, 13, 87-96
(1994).
27.Van Schaik A., Franunholcz, N., and Dalmijn, W. L.,
“Conflicting Developments in Today’s Recycling of End-of-
Life Vehicles,” Recycling International, September, No.8
(1999).
28.李俊坤,“聚氨基甲酸乙酯泡綿化學裂解技術基礎研究”,碩士
論文,台灣大學環境工程研究所 (1997)。
29.吳照雄、鄭建民、黃宏章、張慶源,“軟質廢PU泡綿化學裂解
研究(Ⅱ)”,第十五屆廢棄物處理技術研討會論文集,第1-
199~1-205(2000)。
30.薛敬和,“高分子化學”,高立圖書有限公司,台北市 (1992)。
31.賴耿陽,“PU原理與實用”,復漢出版社,台南市 (1997)。
32.蘇銘千、蔣本基、李公哲、李清華,“廢機動車輛拆解及資源回
收技術”,土木技術,第1卷,第10期,第64~74頁 (1998)。
33. http://www.bayer.com.tw/business_0.htm

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔