(3.236.118.225) 您好!臺灣時間:2021/05/16 13:51
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:吳燦彣
研究生(外文):Tsan-Wen Wu
論文名稱:纖維強化複合材料對圓形橋柱抗震行為影響之研究與分析
論文名稱(外文):Simulation of Seismic Response of Circular Reinforced Concrete Bridge Columns Strengthened by FRP
指導教授:李秉乾李秉乾引用關係
指導教授(外文):Bing-Jean Lee
學位類別:碩士
校院名稱:逢甲大學
系所名稱:土木及水利工程研究所
學門:工程學門
學類:土木工程學類
論文種類:學術論文
論文出版年:2001
畢業學年度:89
語文別:中文
論文頁數:226
中文關鍵詞:碳纖維強化複合材料補強剪力位移剪力剛度
外文關鍵詞:CFRPretrofitshear deformationsshear stiffness
相關次數:
  • 被引用被引用:4
  • 點閱點閱:164
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究整合過去十年內國內外共計40根圓形橋柱相關之實驗成果,經由實驗現象與目前理論背景對照討論結果之歸納整理,對於現今既有之圍束混凝土理論、耐震評估規範、耐震補強設計準則提出適當之建議,希望做為未來國內橋樑耐震規範修正時之參考。另外,對於圓形橋柱經碳纖維強化複合材料(CFRP)補強前後力學行為進行比較探討時,發現利用CFRP進行補強強化,可有效提高橋柱之耐震能力,達轉變破壞模式之補強目的。
有鑑於橋柱實驗所需耗費的人力、物力龐大,若能提供一合理可靠之理論預測方式,將可大量節省時間,因此著手開發簡易分析程式ADSF,由於該程式是以平面保持平面,幾何線性,材料非線性之彎矩理論架構為基礎,因此對於非彎矩破壞橋柱力學表現之預測較不佳,但在引入剪力位移(剛度)修正機制後,對於大部分橋柱皆能提供良好的預測結果。
The purpose of the study is to collect the large domain of circular reinforced concrete bridge columns in the recent ten years. The forty columns involved twenty-five “as-built” and fifteen columns strengthened by CFRP. To provide reasonable and suitable suggests for theoretical stress-strain model for confined concrete, seismic assessment code, design guidelines for seismic retrofitting by comparing experiment results with current theorems. Extended comparison between benchmark and retrofitting specimens show that the retrofit by CFRP can increase seismic performance(strength and drift ratio)and change the failure mode of bridge columns.
The second aim of the study is to provide bridge engineers a reliable and simple method for assessing the performance of existing bridge columns so that deficient columns can be identified from a large number of existing bridges for retrofit, and allow an assessment of the improved columns performance after retrofit.
Shear deformations(stiffness)can become significant for short columns or columns failed in shear in a brittle fashion, or at low flexural ductility levels, so additional shear deformations were considered in the analysis computer program-ADSF. Reasonable prediction and simulation is achieved after consideration of shear deformations.
第一章 緒論..................................................1
1.1研究動機..................................................1
1.2研究目的..................................................3
1.3研究內容..................................................4
第二章 鋼筋混凝土圓形橋柱之理論分析..........................5
2.1混凝土....................................................5
2.1.1Mander et al. model(1988).............................7
2.1.2Saatcioglu and Razvi model(1992)......................14
2.1.3Hoshikuma et al. model(1997)..........................16
2.1.4Lin and Li model(1999)................................20
2.2鋼筋......................................................21
2.2.1縱向鋼筋之應力-應變曲線模式...........................21
2.2.2橫向鋼筋..............................................24
2.3薄片分析..................................................24
2.3.1組成材料斷面之界定....................................25
2.3.2斷面作用力分析........................................26
2.4橋柱荷重之預測............................................28
2.4.1開裂載重..............................................28
2.4.2降伏載重..............................................29
2.4.3極限載重..............................................29
2.5橋柱位移之預測............................................30
2.5.1未補強柱撓曲位移之計算................................30
2.5.2FRP補強柱撓曲位移之計算...............................34
2.5.3主筋斷筋柱撓曲位移之計算..............................36
2.5.4橋柱剪力位移之計算....................................37
2.5.5剪力位移(剛度)之使用時機..............................39
第三章 FRP耐震補強設計.......................................50
3.1FRP材料簡介...............................................50
3.2橋柱耐震能力不足之原因....................................50
3.3剪力需求..................................................51
3.4剪力容量..................................................52
3.5橋柱剪力補強設計..........................................63
3.6橋柱韌性補強設計..........................................66
3.7避免橋柱縱向鋼筋挫屈之補強設計............................71
3.8鋼筋搭接長度不足之補強設計................................73
3.9主筋斷筋點附近(或圍束箍筋間距變大處)之補強設計............75
第四章 圓形橋柱行為探討......................................86
4.1高主筋量;低細長比........................................86
4.2主筋量之下限..............................................87
4.3高軸力作用................................................88
4.4橫向箍筋延伸搭接..........................................88
4.5主筋斷筋..................................................89
4.5.1主筋斷筋柱之分析模式..................................89
4.5.2理想斷筋高度..........................................90
4.5.3實驗現象..............................................90
4.6主筋搭接..................................................91
4.7抗彎與抗剪能力相近........................................92
4.8高韌性剪力破壞............................................93
4.9斜向剪力裂縫之變化........................................93
4.10環狀箍筋裂縫之影響.......................................94
4.11補強前後差異性...........................................94
4.12尺寸效應.................................................97
第五章 理論分析與試驗結果之比較..............................114
5.1圓形橋柱試體簡介..........................................114
5.2荷重-變位反應............................................114
5.2.1初始勁度..............................................115
5.2.2最大荷重..............................................116
5.2.3極限位移..............................................119
5.3圍束混凝土應力-應變模式..................................120
5.4剪應力之檢核..............................................125
5.5破壞模式之判定............................................125
5.6剪力強度..................................................126
5.7補強設計..................................................129
第六章 結論與建議............................................209
6.1結論......................................................209
6.1.1理論預測..............................................209
6.1.2實驗結果..............................................210
6.2建議......................................................210
6.2.1理論預測..............................................210
6.2.2橋柱試體實驗..........................................211
6.2.3橋柱變形能力之判定....................................211
6.2.4圍束混凝土理論........................................212
6.2.5耐震評估..............................................212
6.2.6耐震補強..............................................212
6.2.7施工品質與技術........................................213
參考文獻.....................................................214
附錄A........................................................220
【1】Chai, Y. H., Priestley, M. J. N., Seible, F.(1991), “ FLEXURAL RETROFIT OF CIRCULAR REINFORCED BRIDGE COLUMNS BY STEEL JACKETING.(COLRET)” Structural Systems Research Project, Report No. SSRP-91/05, University of California, San Diego, La Jolla, CA.
【2】Mander, J. B., Priestley, M. J. N. and Park, R.(1984), “ Seismic Design of Bridge Piers.” Report 84-2, Department of Civil Engineering, University of Canterbury, Christ- church, New Zealand.
【3】Mander, J. B., Priestly, M. J. N., Park, R.(1988),“ Theoretical Stress-Strain Model FOR Confined Concrete” Jour. Struct. Div., ASCE,114(8),1804-1826.
【4】Saatcioglu, M.,and Razvi, S. R.(1992). “Strength and ductility of confined concrete”J. Struct. Engrg.,ASCE,118(6),1590-1606.
【5】Hoshikuma, J.,Kawashima, K.,Nagaya, K.,Taylor, A. W.(1997)“Stress-strain model for confined reinforced concrete in bridge piers” J. Struct. Engrg.,ASCE,123(5),624-633.
【6】Li, Y. F., C.-T. Lin and Y.-Y. Sung, “A Physical Based Constitutive Model for Concrete Confined with Carbon Fiber Reinforced Plastics,”(in preparation)
【7】S.A. Mirza and J.G. MacGregor. Variability of mechanical properties of reinforcing bars. Jour. Struct. Div., ASCE,105(ST5):921-937,May 1979.
【8】姚詩豪,“中空矩形橋柱之抗彎行為”,成功大學土木工程研究所碩士論文。中華民國87年6月。
【9】Belarbi, A. and Hsu, T. T. C., “Constitutive of Reinforced Concrete in Biaxial Tension-Compression”, Research Report UHCEE912, University of Houston,1991.
【10】ACI 318 — 83 , “Building Code Requirement for Reinfoced Concrete”,Amercian Concrete Institute,1983.
【11】Priestley, M. J. N, Seible, F. and Calvi, G. M. “Seismic Design and Retrofit of Bridges,”Wiley & Sons,New York, 1996.
【12】張旭福,“鋼筋混凝土短柱補強措施之定量研究”,成功大學建築研究所碩士論文。中華民國82年6月。
【13】橋樑耐震補強準則,交通部科技顧問室,中華民國87年9月。
【14】Ang Beng Ghee, M. J. N. Priestley, and T. Paulay.(1989) “Seismic shear strength of circular reinforced concrete columns.” ACI Struct. Jour., 86(1):45-59.
【15】Loma Prieta Earthquake Reconnaissance Report.-(Supplement to Volume 6) Earthquake Spectra. Earthquake Engineering Research Institute, May 1990.448 pp.
【16】AASHTO, 1992, “ Standard Specifications for Highway Bridges,”Fifteenth Edition,Washington. D.C.
【17】Aschheim, M., and Moehle, J. P., “Shear Strength and Deformability of Reinforced Concrete Bridge Columns Subjected to Inelastic Cyclic Displacement”,Report No.UCB/EERC-92/04, Earthquake Engineering Research Center, University of California at Berkeley, March 1992.
【18】Aschheim, M.,Moehle, J. P.,and Werner, S. D., Deformability of Concrete Columns, Report to California Department of Transportation under Contract Number 59Q122,Dames & Moore, Oakland, California, June 1993.
【19】Priestly, M.J.N., Verma, R., Xiao, Y., “Seismic Shear Strength of Reinforced Concrete Columns, ”ASCE Journal of Structural Engineering, Vol. 120, no. 8, August 1994, pp.2310-2329.
【20】Verma, R., Priestly, M. J. N.,and Seible, F., Assessment of Seismic Reponse and Steel Jacket Retrofit of Squat Circular Reinfoced Concrete Bridge Columns, Report No. SSRP-92/05, Department of Applied Mechanics and Engineering Sciences, University of California at San Diego, June 1993.
【21】Ravindra Verma, Priestly, M. J. N., “Optimal trends in seismic design of single column circular reinforced concrete bridge piers” , Report to California Department of Transportation Grant RTA 599267.
【22】Improved Seismic Design Criteria for California Bridges:Provisional Recommendations, ATC-32, Applied Technology Council,Redwood City California, 1996.
【23】Kowalsky, M. J., Priestley, M. J. N. (2000) “Improved Analysis Model for Shear Strength of Circular Reinforced Corcrete Columns in Seismic Regions.” ACI Struct. Jour., 97(3):388-396.
【24】F. Seible, “Seismic Bridge Damage and Advanced Composite Retrofit of Bridge Columns,” Technical Seminar on Advanced Technologies for Bridge Infrastructure Renewal, N. T. U.May 21 to 23, 1997.
【25】Caltrans, “Bridge Design Specification”, June 1986.
【26】Priestley, M. J. N, and F. Seible, (editors) “ Seismic Assessment and Retrofit of Bridges,” Structural Systems Research Project, Report No. SSRP-93/06, University of California, San Diego, La Jolla, CA, July 1991, 426 pp.
【27】陳昭明,“混凝土橋柱耐震評估及FRP補強方法研究”,台灣大學土木工程學研究所碩士論文。中華民國83年2月,pp.21-43。
【28】張順賓,“圓形橋柱碳纖維耐震補強之研究”,逢甲大學土木及水利工程研究所碩士論文。中華民國88年6月。
【29】Hose, Y. D., Priestley, M. J. N., Seible, F.(1997), “STRATEGIC RELOCATION OF PLASTIC HINGES IN BRIDGE COLUMNS. ” Structural Systems Research Project, Report No. SSRP-97/05, University of California, San Diego, La Jolla, CA.
【30】Chai, Y. H., Priestley, M. J. N., Seible, F.(1991), “ Seismic Retrofit of Circular Bridge Columns for Enhanced Flexural Performance ” ACI Struct. Jour., 88(5):572-584.
【31】謝有明,“RC橋柱之鋼板包覆耐震補強”,台灣科技大學營建工程研究所碩士論文。中華民國88年。
【32】郭苗宜,“ RC橋柱之剪力與主筋搭接耐震補強”,台灣科技大學營建工程研究所碩士論文。中華民國89年。
【33】朱育正,“碳纖維複合材料(CFRP)於圓形橋柱耐震補強之研究”,台北科技大學土木與防災研究所碩士論文。中華民國89年12月。
【34】宋奕穎,“ 碳纖維複合材料(CFRP)於圓形橋柱剪力破壞耐震補強之研究”,台北科技大學土木與防災研究所碩士論文。中華民國90年6月。
【35】Priestley, M. J. N., Seible, F.(1994), “Steel Jacket Retrofitting of Reinforced Concrete Bridge Columns for Enhanced Shear Strength-Part 1:Theoretical Considerations and Test Design ” ACI Struct. Jour., 91(4):394-405.
【36】Priestley, M. J. N., Seible, F.(1994), “Steel Jacket Retrofitting of Reinforced Concrete Bridge Columns for Enhanced Shear Strength-Part 2:Test Results and Comparison with Theory ” ACI Struct. Jour., 91(5):537-551.
【37】Benzoni, G., Ohtaki, T., Priestley, M. J. N., Seible, F.(1996), “SEISMIC PERFORMANCE OF CIRCULAR REINFOCED CONCRETE COLUMNS UNDER VARYING AXIAL LOAD. ” Structural Systems Research Project, Report No. SSRP-96/04, University of California, San Diego, La Jolla, CA.
【38】Priestley, M. J. N., Benzoni, G.(1996), “Seismic Performance of Circular Columns with Low Longitudinal Reinfocement Ratios ” ACI Struct. Jour., 93(4):474-485.
【39】Ngan Ha D. Vu, Priestley, M. J. N., Seible, F., Benzoni, G.(1999), “THE SEISMIC RESPONSE OF WELL-CONFINED CIRCULAR REINFOCED CONCRETE COLUMNS WITH LOW ASPECT RATIOS. ” Structural Systems Research Project, Report No. SSRP-97/15, University of California, San Diego, La Jolla, CA.
【40】纖維強化高分子複合材料(CFRP)貼片補強RC結構物之研究,內政部營建署,中華民國89年11月,pp.5-1~5-23。
【41】李有豐、林安彥,“橋樑檢測評估與補強”,全華科技圖書股份有限公司,中華民國89年8月。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top