跳到主要內容

臺灣博碩士論文加值系統

(34.204.181.91) 您好!臺灣時間:2023/09/28 08:38
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:黃恆庭
研究生(外文):Heng-Ting Huang
論文名稱:壓電致動器磁滯模型之觀測器
論文名稱(外文):An Observer for a Hysteresis Model of a Piezoelectric Actuator
指導教授:黃建立
指導教授(外文):Jiann-Lih Hwang
學位類別:碩士
校院名稱:逢甲大學
系所名稱:自動控制工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2001
畢業學年度:89
語文別:中文
論文頁數:77
中文關鍵詞:磁滯壓電觀測器
相關次數:
  • 被引用被引用:15
  • 點閱點閱:195
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
在壓電致動器驅動的微定位平台研究中,磁滯效應降低控制系統的性能,若能加以補償可提升性能,本文採用Chen[12]的連續磁滯模式建立壓電致動平台的模式,並提出離散化的方法,但模式之磁滯效應不可直接量測,必須設計觀測器來觀測磁滯效應,本文設計連續與離散之〝類Luenberger〞觀測器,並以LMI方法驗證其在操作範圍內的穩定性,在模擬與實驗中分別以三角波訊號及不連續(有突然變化)的訊號輸入連續模式、離散模式和實際平台系統,藉以測試觀測器的性能,結果顯示實現的觀測器的性能符合需求。
In studying the control of a piezo-electric actuator driven micro-positioning stage system, the control performances are degraded by hysteresis effects. Aiming at improving the performances, many hysteresis models have been proposed in literatures for hysteresis compensation. In this study, the continuous hysteresis model in Chen[12] is adopted for the system and is discretized. However the hysteresis effect can not be directly measured in our case, an observer is necessary for estimating the hysteresis. A〝Luenberger-like〞 observer is designed for the model, the stability of the observer within a specific operating range can be tested with the LMI method. The performances of the observers for continuous model, discrete model and practical system are tested through applying a triangular input signal and a discontinuous input signal. The simulation and experimental results indicate the designed observers have the expected performances.
誌謝ii
中文摘要iii
英文摘要iv
目錄v
圖目錄vii
表目錄ix
第一章 緒論1
1.1 前言1
1.2 文獻回顧2
1.3 研究動機4
第二章 壓電致動平台模式建立5
2.1 壓電致動平台模式5
2.2 壓電致動平台狀態空間描述7
2.3 數學模式之參數決定8
2.4 模式的不確定性12
第三章 實驗設備與系統架構16
3.1 實驗設備16
3.2 系統架構19
第四章 連續模式狀態觀測器設計20
4.1狀態觀測器的設計20
4.1.1線性狀態方程式觀測器20
4.1.2非線性類Luenberger觀測器21
4.2觀測器設計方法一:極點配置法22
4.3設計方法一之觀測器模擬結果25
4.4觀測器設計方法二:30
4.5設計方法二之觀測器模擬結果32
第五章 離散狀態觀測器設計35
5.1 模式之離散化35
5.2磁滯模式之離散化36
5.3離散化磁滯模式模擬結果38
5.4 離散觀測器之設計41
5.5 離散觀測器之模擬45
第六章 實驗結果49
6.1 實驗架構49
6.2 實驗結果比較49
第七章 結論54
參考文獻56
附錄159
附錄263
附錄367
[1]S. H. Chang, C. K. Tseng and H. C. Chien, “An ultra-precision XY piezo-micropositioner Part I: design and analysis”, IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, vol. 46, no. 4, pp. 897-905, 1999.
[2]S. H. Chang, C. K. Tseng and H. C. Chien, “An ultra-precision XY piezo-micropositioner Part II: experiment and performance”, IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, vol. 46, no. 4, pp. 906-912, 1999.
[3]K.-Y. Tsai and J.-Y. Yen, “Servo system design of a high-resolution piezo-driven fine stage for step-and-repeat microlithography systems”, The 25th Annual Conference of the IEEE Industrial Electronics Society, 1999, vol. 1, pp. 11-16, 1999.
[4]S.-S. Ku, U. Pinsopon, S. Cetinkunt and S. Nakajima, “Design, fabrication, and real-time neural network control of a three-degrees-of-freedom nanopositioner”, IEEE/ASME Transactions on Mechatronics, vol. 5, no. 3, pp. 273-280, 2000.
[5]J.-H. Xu, “Neural network control of a piezo tool positioner”, Canadian Conference on Electrical and Computer Engineering, vol. 1, pp. 333-336, 1993.
[6]Y. Ok, “A micro-positioning tool post using a piezoelectric acruator for diamond turning machines”, Butterworth-Heinemann Ltd Precision Engineering, vol. 12, no. 3, pp. 151-156, 1990.
[7]S.-B. Jung and S.-W. Kim “Improvement of scanning accuracy of PZT piezoelectric acruators by feed-forward model-reference control”, Butterworth-Heinemann Ltd Precision Engineering, vol. 16 ,no. 1, pp. 49-55, 1994.
[8]P. Ge and M. Jouaneh, “Tracking control of a piezoceramic actuator”, IEEE Transaction on Control Systems Technology, vol. 4, pp. 209-216, 1996.
[9]D. Croft, G. Shedd and S. Devasia, “Creep, hysteresis, and vibration compensation
for piezoactuators: atomic force microscopy application”, Proceedings of the 2000 American Control Conference, pp. 2123-2128, 2000.
[10]M. Goldfarb and N. Celanovic, “Modeling piezoelectric stack actuators for control of micromanipulation”, IEEE Control Systems Magazine, vol. 17, pp. 69-79, 1997.
[11]Y. Stepanenko and C.-Y. Su, “Intelligent control of a piezoelectric actuator”, Proceedings of the 37th IEEE Conference on Decision & Control, pp. 4234-4139, 1998.
[12]B. M. Chen, T. H. Lee, C.-C. Hang, Y. Guo and S. Weerasooriya, “An almost disturbance decoupling robust controller design for a piezoceramic bimorph actuator with hysteresis”, IEEE Transaction on Control Systems Technology, vol. 7, no. 2, pp. 160-173, 1999.
[13]Y. K. Wen, “Methods of random vibration for inelastic structures”, Journal of Applied Mechanics Review, vol. 42, no. 2, pp. 39-52, 1989.
[14]葉翊國, “類神經網路遲滯建模應用於壓電致動器之控制”, 逢甲大學自動控制工程學系, 碩士論文, 民國八十六年。
[15]Gauthier, J. P., Hammouri, H. and Othman, S., “A simple observer for nonlinear systems applicaations to bioreactors “, IEEE Trans. Automat. Contr., Vol. 37, pp. 875-880, 1992.
[16]H. K. Khalil, “High-gain observers in nonlinear feedback control“LNCIS244, pp. 249-268.
[17]G. Ciccarella, M. D. Mora and A. Germani, “A Luenberger-like observer for nonlinear systems”, Int. J. Control, vol. 57,no. 3, pp.537-556, 1993.
[18]S. Hara and K. Furuta, “Minimal order state observers for bilinear systems”, Int. J. Control, vol. 24,no. 5, pp.705-718, 1976.
[19]S.Boyd, L. E. Ghaoui, E. Feron and V. Balakrishnan, “Linear matrix inequalities in system and control theory”, Society for Industrial and Applied Mathematics, 1994.
[20]P. Gahinet, A. Nemirovski, A. J. Laub and M. Chilali, “LMI Control Toolbox User’s Guide”, The MathWorks, Inc., 1995.
[21]Charles L. Phillips H. Troy Nagle, “Digital Control System Analysis and Design”, 儒林圖書有限公司, 1994.
[22]I. M. Mayergoyz, “Mathematical Models of Hysteresis”, New York: Springer, 1991.
[23]H. Richter, E.A. Misawa, D.A. Lucca and H. Lu, “Modeling nonlinear behavior in a piezoelectric actuator”, Journal of the International Societies for Precision Engineering and Nanotechnology, pp. 128-137, 2001.
[24]黃嘉全, “含磁滯致動器微動平台之增益規劃控制”, 逢甲大學自動控制工程學系, 碩士論文, 民國九十年。
[25]H. O. Wang, K. Tanaka, and M. F. Griffin, “An approach to fuzzy control of nonlinear systems: stability and design issues”, IEEE Trans. Fuzzy Syst., vol. 4,pp 14-23, Feb. 1996.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top