(3.236.222.124) 您好!臺灣時間:2021/05/10 15:59
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

: 
twitterline
研究生:黃裕豐
研究生(外文):Yu-Feng Huang
論文名稱:一個在大型蜂巢式行動網路上具調適性的頻道配置策略
論文名稱(外文):An Adaptive Channel Allocation Strategy for Large-Scale Cellular Mobile Networks
指導教授:竇其仁竇其仁引用關係
指導教授(外文):Chyi-Ren Dow
學位類別:碩士
校院名稱:逢甲大學
系所名稱:資訊工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2001
畢業學年度:89
語文別:英文
論文頁數:101
中文關鍵詞:個人通訊系統大型蜂巢式網路動態頻道配置通訊量調適
外文關鍵詞:PCSLarge-Scale Cellular NetworksDynamic Channel AllocationTraffic- Adaptation
相關次數:
  • 被引用被引用:0
  • 點閱點閱:102
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:2
  • 收藏至我的研究室書目清單書目收藏:0
由於行動主機的快速發展,促成使用者數量急速的成長,在有限的無線頻道資源下,使用有效率的頻道配置方法來增加系統負載量與滿足聲音和多媒體傳輸的需求成為一個非常重要的課題。我們在此研究中,提出一個具調適性的單頻道與多頻道配置方法PLOW。此方法是由四種不同的機制:主要集合 (Primary Set)、頻道鎖斷數(Lock of Channels)、頻道等級 (Order)、和頻道加權值 (Weight of Channels),所組成。此演算法為分散式方法,每個細胞都有一個頻道干擾表來記錄自己和干擾範圍細胞目前頻道的資訊。此方法主要的特色包含具調適性的主要列表、密集的頻道使用格局、減少受干擾的鄰近細胞數。不管是單頻道或多頻道配置,它都能針對不同通訊量分佈的變動來配置適當的頻道並且能使系統增加通訊負載量,使得頻道使用更有效率。而且,此頻道配置能即時的提供服務以滿足對於延遲易受影響的要求。實驗證明此方法在各種不同通訊量分佈的情形下,所表現的效能優於其它頻道配置方法,特別是在大型蜂巢式行動網路環境。

Technological advances and rapid development of handheld terminals have facilitated the rapid growth of the mobile users. Since the tremendous growth of the wireless communication requirements is expected under the limited bandwidth, using efficient channel allocation strategy to enhance the traffic-carrying capacity and to satisfy the voice or multimedia requirements is a matter of vital importance. In this study, an adaptive channel allocation strategy, PLOW, which is based on the Primary set, Lock, Order, and Weight of the channels is developed. PLOW is a distributed scheme and a channel interference table is maintained in each cell to record the channel use of the cell and its interfering neighbors. The major features of PLOW include an adaptive primary list, the compaction of cochannel reuse pattern, and the reduction of affected neighboring cells. It can deal with various traffic load distributions and enhance the traffic-carrying capacity for not only single-channel but also multi-channel allocation. Moreover, the channel assignment can be finished in time to satisfy the highly delay-sensitive requirement for real-time calls. Experimental results demonstrate that the proposed strategy outperforms other schemes in uniform, non-uniform, and hybrid traffic distributions, especially in large-scale cellular mobile networks.

摘要I
AbstractII
Table of ContentsIII
List of FiguresVI
List of TablesVIII
NotationsIX
CHAPTER 1Introduction1
1.1MOTIVATION1
1.2OVERVIEW OF THE RESEARCH3
1.3THESIS ORGANIZATION4
CHAPTER 2Related Work6
2.1BACKGROUND OF CELLULAR MOBILE NETWORKS6
2.1.1Personal Communication Services6
2.1.2Cellular Mobile Systems8
2.1.3Handoff9
2.1.4Cochannel Interference10
2.1.5Reuse Distance10
2.2CHANNEL ALLOCATION SCHEMES11
2.2.1FCA (Fixed Channel Allocation)11
2.2.1.1BCO (Borrowing with Channel Ordering)12
2.2.1.2BDCL (Borrowing with Directional Channel Locking Strategy)12
2.2.1.3CGA (Combined Genetic Algorithm)13
2.2.2DCA (Dynamic Channel Allocation)13
2.2.2.1Centralized DCA14
2.2.2.2Distributed DCA14
2.2.2.3Other DCA Schemes with Priority15
2.2.2.4CBWI (Channel Borrowing with Interference Information)15
2.2.2.5CDM (Cochannel Distance Minimization Hybrid Channel)16
2.2.2.6TSDP (Two-Step Dynamic-Priority)17
2.2.2.7CDCA (Cochannel information-based Dynamic Channel Assignment)18
2.2.3HCA (Hybrid Channel Allocation)18
2.3CHANNEL ALLOCATION SCHEMES FOR MULTIMEDIA SERVICES18
2.3.1.1GDCA (Group Dynamic Channel Assignment)19
2.3.1.2PDCA (Priority Dynamic Channel Assignment)19
2.4PCS SIMULATION SYSTEMS20
2.4.1Web-based Learning Tool for PCS: SimPCS21
CHAPTER 3Single-Channel Allocation Algorithm26
3.1SYSTEM MODEL AND ASSUMPTIONS26
3.2PRELIMINARY NOTIONS28
3.3DETAILS OF THE PROPOSED ALGORITHM28
3.3.1Channel Interference Table28
3.3.2Adaptive Primary List and the Order List29
3.3.3Compaction of Reuse Pattern32
3.3.4Cost Function33
3.3.5Priority Measurement35
3.3.6The Channel Assignment Algorithm36
3.3.7The Channel Re-Assignment Algorithm38
3.3.8Updates of Channel Interference Table39
3.3.9Analysis of the Algorithm39
CHAPTER 4Multi-channel Allocation Algorithm43
4.1SYSTEM MODEL AND ASSUMPTIONS43
4.2DETAILS OF THE PROPOSED ALGORITHM44
4.2.1Channel Interference Table44
4.2.2Adaptive Primary List45
4.2.3Cost Function46
4.2.4Priority Measurement47
4.2.5The Channel Assignment Algorithm47
4.2.6The Channel Re-Assignment Algorithm48
CHAPTER 5Experimental Results49
5.1SINGLE-CHANNEL ALLOCATION49
5.1.1Simulation Environment49
5.1.2Experiments51
5.1.2.1Uniform Traffic Distributions51
5.1.2.2Non-Uniform Traffic Distributions54
5.1.2.3Hybrid Traffic Distributions56
5.1.2.4Comparison of Fixed and Adaptive Primary Lists57
5.1.2.5Experiments for Different Weight Values58
5.1.3Summary59
5.2MULTI-CHANNEL ALLOCATION60
5.2.1PLOW and CBWI for Multi-Channel Allocation60
5.2.1.1Simulation Environment61
5.2.1.2Experiments61
5.2.2PLOW and PDCA for Multi-Channel Allocation65
5.2.2.1Simulation Environment65
5.2.2.2Experiments66
5.2.3Consideration on Frequency of Channel Reuse for Multi-Channel Allocation67
5.3N-CHANNEL REQUEST EXPERIMENTS68
5.3.1Simulation Environment68
5.3.2Results68
CHAPTER 6Visualization of Channel Allocation Using SimPCS73
6.1SINGLE-CHANNEL ALLOCATION74
6.2MULTI-CHANNEL ALLOCATION77
6.3CELL VIEWER FUNCTIONS80
CHAPTER 7Concluding Remarks81
Bibliography83
誌 謝89
Vita90

1.Fumiyuki ADACHI, “Wireless Past and Future--Evolving Mobile Communications Systems,” IEICE Transactions fundamentals, Vol. E84-A, No.1, January 2001.
2.F. Akyildiz, J. S. M. Ho, and Y. B. Lin, “Movement-Based Location Update and Selective Paging for PCS Networks,” IEEE/ACM Transactions on Networking, vol. 4, no. 4, pp. 629-638, August 1996.
3.S. Azad and R. Sankar, “Performance of Channel Assignment Strategies in Cellular Systems,” IEEE Southeastcon on Proceedings, pp. 299 —304, 1999.
4.A. Baiocchi, F. D. Priscoli, F. Grilli, and F. Sestini. “The Geometric Dynamic Channel Allocation as a Practical Strategy in Mobile Networks with Bursty User Mobility,” IEEE Transactions on Vehicular Technology, vol.44, no. 1, pp. 14-23, February, 1995.
5.R. Beck and H. Panzer, “Strategies for Handover and Dynamic Channel Allocation in Micro-cellular Mobile Radio Systems,” 39th IEEE Vehicular Technology Conference, pp.178-185, San Francisco, May 1989.
6.Dirk Beckmann and Ulrich Killat, “A New Strategy for the Application of Genetic Algorithms to the Channel-Assignment Problem,” IEEE Transactions on Vehicular Technology, July 1999.
7.G.. Cao and M. Singhal, “Efficient distributed channel allocation for cellular networks,” Computer Communications, vol. 23, issue. 10, pp. 950-961, May 1, 2000.
8.D. Carothers and R. M. Fujimoto, “Distributed Simulation: An Effective Modeling Tool for Large-Scale PCS Networks,” International Journal on Computer Simulation, 3rd, Quarter 1996.
9.D. Carothers, R. M. Fujimoto, and Y. B. Lin, “Simulating Population Dependent PCS Network Models Using Time Warp,” in Proceedings of the IEEE 45th Vehicular Technology Conference, July 1995.
10.Chung-Ju Chang, Po-Chiun Huang, and Tian-Tsair Su, “A channel borrowing scheme in a cellular radio system with guard channels and finite queues,” IEEE International Conference on Communications, vol. 2, pp. 1168-1172, 1996.
11.K. Chang, J. Kim, C. Yim, and S. Kim, “An Efficient Borrowing Channel Assignment Scheme for Cellular Mobile Systems,” IEEE Transactions on Vehicular Technology, vol. 57, no. 2, pp. 602-608, May 1998.
12.A. M. Chen and R. R. Rao, “Multi-Channel Packet Resource Allocation for Multimedia Support,” 48th IEEE Vehicular Tecnology Conference, vol. 3, pp. 1770-1774, 1998.
13.P. H. J. Chong and C. Leung, “A New Channel Borrowing Scheme with Interference Information for Cellular Systems,” 49th IEEE Vehicular Technology Conference, vol.1, pp. 20-24, 1999.
14.L.J. Cimini, G.J. Foschini, C.L. I, and Z. Miljanic, “Call Blocking Performance of Distributed Algorithms for Dynamic Channel Allocation in Microcells,” IEEE Transactions on Communications 42(8), pp. 2600-2607, 1994.
15.L. J. Cimini, G.J. Foschini, and L. A. Shepp, “Single-channel User-capacity Calculations for Self-organizing Cellular Systems,” IEEE Transaction on Communcations, vol. 42, no. 12, pp. 3137-3143, December 1994.
16.S.K. Das, S.K. Sen, and R. Jayaram, “Dynamic load balancing strategies for channel assignment using selective borrowing in cellular mobile environments,” ACM/IEEE MOBICOM’96, Rye, New York, USA, pp. 73-84, November 1996,. Also: ACM/Baltzer Journal on Wireless Networks 3, pp. 333-347, 1997.
17.E. Del Re, R. Fantacci, and G. Giambene, “Handover and Dynamic Channel Allocation Techniques in Mobile Cellular Networks,” IEEE Transactions on Vehicular Technology 44(2), pp. 229-237, May 1995.
18.X. Dong and T.H. Lai, “An Efficient Priority-Based Dynamic Channel Allocation Strategy for Mobile Cellular Networks,” IEEE INFOCOM '97. Sixteenth Annual Joint Conference of the IEEE Computer and Communications Societies. Driving the Information Revolution, vol. 2, pp. 892 —899, 1997.
19.L. Favalli, “Sectorized channel borrowing scheme with resource pooling,” 50th IEEE VTS on Vehicular Technology Conference, vol. 5, pp. 3019-3023, 1999.
20.P. A. Fishwick and Y. B. Lin, “Asynchronous Parallel Discrete Event Simulation,” IEEE Transactions on System, Man and Cybgernetics, vol. 26, no. 4, pp. 397-412, 1996.
21.R. M. Fujimoto and S. Bhatt, “Parallel Simulation Techniques for Large-Scale Networks,” IEEE Communication Magazine, pp. 42-47, August 1998.
22.Anna Hac and Zhengping Chen, “A Hybrid Channel Allocation Method for Wireless Communication Networks,” International Journal of Network Management, pp. 59-74, March 2000.
23.A. Hac and C. Mo, “Dynamic Channel Assignment in Wireless Communication Networks,” International Journal of Network Managerment 9, pp. 44-66, 1999.
24.A. Hac and C. Xiao, “Improving Performance of Channel Assignment in Cellular Mobile Communication Network,” IEEE Pacific Rim Conference on Communications, Computers and Signal Processing, vol. 1, pp. 358-361, 1997.
25.L. I, G. P. Pollini, and R. D. Gitlin, “PCS Mobility Management Using the Reserved Virtual Call Setup Algorithm,” IEEE/ACM Transactions on Networking, vol. 5, no. 1, pp. 13-24, February 1997.
26.S. Jordan, “Resource Allocation in Wireless Networks,” Journal of High Speed Networks, vol.5, no.1, 1996.
27.T.J. Kahwa and N.D. Georganas, “A Hybrid Channel Assignment Scheme in Large-Scale Cellular-Structured Mobile Communication Systems,” IEEE Transactions on Communications, pp. 432-438, April 1978.
28.I. Katzela and M. Naghshineh, “Channel Assignment Schemes for Cellular Mobile Telecommunication Systems: A Comprehensive Survey,” IEEE Personal Communications vol. 33, pp. 10-31, June 1996.
29.Y. B. Lin, “Introduction to Mobile Network Management,” WeiKeg, June 1997.
30.Y. B. Lin and P. A. Fishwick, “Asynchronous Parallel Discrete Event Simulation,” IEEE Transactions on System, Man and Cybernetics, vol. 26, no. 4, pp. 397-412, 1996.
31.W. Lin, C. C. Chiang, H. K. Wu, V. Jha, M. Gerla, and R. Bagrodia, “Parallel Simulation on Environment for Mobile Wireless Networks,” in Proceedings on Winter Simulation Conference, 1996.
32.W. Lin and Y. B. Lin, “Development of a PCS Handoff Simulator,” Master Thesis, Department of Computer Science, National Chiao-Tung University, June 1997.
33.S. Nanda and D. Goodman, “Dynamic Resource Acquisition: Distributed Carrier Allocation for TDMA Cellular Systems,” IEEE GLOBECOM, pp. 883-889, 1991.
34.Chiu Y. Ngo and Victor O. K. Li, “Fixed Channel Assignment in Cellular Radio Networks Using a Modified Genetic Algorithm,” IEEE Transactions on Vehicular Technology, vol. 47, issue. 1, February 1998.
35.C. Oliveira, J. B. Kim and T. Suda, “An Adaptive Bandwidth Reservation Scheme for High-Speed Multimedia Wireless Networks,” IEEE Journal on Selected Areas in Communications, vol. 16, no. 6, 1998.
36.J. Short, R. Bagrodia, and L. Kleinrock, “Mobile Wireless Network System Simulation,” ACM Mobile Communication Networking Conference, November 1995
37.R. Singh, S. M. Elnoubi, and C. Gupta, “A new Frequency Channel Assignment Algorithm in High Capacity Mobile Communications Systems,” IEEE Transactions on Vehicular Technology, vol. VT-31, 1982.
38.J. Tajima and K. Imamura, “A strategy for flexible channel assignment in mobile communication systems,” IEEE Transactions on Vehicle Technology 37, May 1988.
39.T. Tamaki, H. Aida and T. Saito, “A Proposal of Reserved Channel Dynamic Channel Assignment Algorithm for Multimedia Mobile Communication Systems,” 7th IEEE International Symposium on Personal, Indoor and Mobile Radio Communications, 1996.
40.S. Tekinay and B. Jabbari, “Handover and Channel Assignment in Mobile Cellular Networks,” IEEE Communication Magazine 29(11), pp. 42-46, November 1991.
41.W. N. Tsai and Y. B. Lin, “Location Tracking with Distributed HLRs and Pointer Forwarding,” IEEE Transactions on Vehicular Technology, vol. 47, no. 1, pp. 58-64, February 1998.
42.C. Tseng and K. L. Sue, “One-Step Pointer Forwarding Strategy for Location Tracking in Distributed HLR Environment,” IEEE Journal on Selected Areas in Communications, vol. 15, no. 8, pp. 1455-1466, October 1997.
43.M. Zhang and T. Yum, “Comparisons of Channel Assignment Strategies in Cellular Mobile Telephone Systems,” IEEE Transactions on Vehicular Technology, vol.38, no. 4, pp. 211-215, November 1989.
44.Yongbing Zhang and SajalK. Das, “An efficient load-balancing algorithm based on a two-threshold cell selection scheme in mobile cellular networks,” Computer Communications, vol. 23, issue. 5-6, pp. 452-461, March 1, 2000.
45.Haihong Zheng and S. Bhattacharya, “Look-ahead channel reservation and borrowing in cellular network systems,” 4th IEEE International Symposium on Proceedings, pp.179-185, 1999.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔