跳到主要內容

臺灣博碩士論文加值系統

(44.200.86.95) 您好!臺灣時間:2024/05/25 15:15
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:廖光陽
研究生(外文):Koung Yang Laio
論文名稱:半導體金屬化接觸電阻及穩定度之研究
論文名稱(外文):Study on the Contact Resistance and Reliability for Semiconductor Metallization
指導教授:劉堂傑楊文祿
指導教授(外文):D- G. LiuW. L. Yang
學位類別:碩士
校院名稱:逢甲大學
系所名稱:電子工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2001
畢業學年度:89
語文別:英文
論文頁數:84
中文關鍵詞:歐姆接觸接觸介面p-型氮化鎵熱處理穩定度電致遷移銅導線阻障層
外文關鍵詞:ohmic contactcontact interfacep-GaNheat treatmentreliabilityelectromigrationcopper interconnectbarrier layer
相關次數:
  • 被引用被引用:0
  • 點閱點閱:364
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文涵蓋兩個主題為「p-type GaN歐姆接觸介面分析與研究」與「銅導線穩定度之研究」。
Part I. p-type GaN歐姆接觸介面分析與研究
在本研究中,我們深入探討p-type GaN熱處理後之金屬接觸如Pd、Ni、Pd/Ti及Ti等之接觸特性與物性。其中,Pd之接觸電阻於熱處理後有顯著的改善並降低至1×10-4cm2以下。在二次離子質譜儀(SIMS)之成分分析結果顯示,Pd/Ti與p-GaN之金屬接觸於熱處理之後,p-GaN氫原子含量有顯著的下降。我們相信利用金屬化後熱處理對於改善p-GN之歐姆接觸特性之構成機制,主要以破壞p-GaN中之Mg-H鍵結來提升載子濃度, 而這與金屬材料與氫之溶解、鍵結能力有相當重要的關係。
金屬化之前的熱處理亦對於降低p-GaN之金屬接觸電阻有50%以上之改善。此外,金屬化前低溫熱處理過程於p-GaN表面形成氧化物,我們利用氫氟酸(HF)有效地清除p-GaN表面氧化物並降低接觸電阻。
關鍵字:歐姆接觸、接觸介面、p-型氮化鎵、熱處理
Part II. 銅導線穩定度之研究
本部分之研究,主要目的在於研究銅導線之穩定度及其影響毀損之機制,如電致遷移、熱梯度分佈與焦耳熱效應等。銅導線之備製方面,採用掀離製程(lift-off process)定義量測導線圖形。
本研究主要討論不同氮流量之氮化鉭(TaNx)阻障層對於銅導線毀損時效的影響。根據研究結果顯示,相較於Cu/TaN5%結構之銅導線, Cu/TaN20%結構之導線有較佳的電性操作穩定度。再者,導線於電流密度1×105A/cm2與40oC之操作環境下,Cu/TaN5%與Cu/TaN20%導線之推測毀損時效分別為10064與4.6×1010小時。於本研究中,我們探討高電流密度下所產生之焦耳熱效應所造成之導線加速毀損,並修正Black模型以提升其適用性。
導線與接觸板之間因寬度不同,使其間之電流梯度與熱梯度過大而加速導線與接觸板之介面毀損,尤當電流密度大於10MA/cm2時更為明顯。比較不同阻障層之銅導線毀損時效,顯示銅導線與阻障層間之介面對於導線穩定度有顯著的差異,以TaN20%為阻障層之導線有較佳的穩定度;其原因在於銅導線之金屬離子質量轉移的飄移路徑以表面與介面為主。
關鍵字:穩定度、電致遷移、熱梯度、阻障層、銅導線

Two issues,〝Part I. Investigation of heat-treated ohmic contacts on p-GaN〞and〝Part II. Reliability of copper interconnects〞, were investigated and discussed in this thesis.
Part I. Investigation of heat-treated ohmic contacts on p-GaN
Ohmic contacts with low specific contact resistance were investigated in this study. First, The contact resistance of p-GaN metalized with Pd, Ti, Ni, and Pd/Ti after heat-treated were investigated. The specific contact resistance of Pd contacts could be minimized as 1×10-4Ωcm2 after a low temperature RTA process. As revealed from the analysis of Secondary Ion-Mass Spectroscopy (SIMS), it was found that the concentration of hydrogen atoms in the p-GaN is dramatically reduced. It is believed that the lower contact resistance of the p-GaN could be mainly attributed to the reduction of hydrogen concentration in the p-GaN.
Secondly, significant improvement with heat treatment before depositing contact metals was investigated. Ohmic contact performance of p-GaN can be improved for 50% or more by pre-metallization RTA process. Thirdly, HF cleaning before metallization was useful to improve the contact properties by removal the oxide or contaminations on p-GaN surface.
Keywords: Ohmic contact, Interface structure, p-type GaN, Heat Treatment
Part II. Reliability of copper interconnects
In this part of the thesis, the reliability of copper interconnect was investigated, including electromigration, thermal gradient and Joule heating effect-induced problems. Lift-off process was adopted for produce copper lines in our lifetime experiments.
Various nitrogenous tantalum (TaNx) as films were employed as the diffusion barrier layer. As the results of the experiments, copper lines with barrier layer of 20 percent nitrogen flow rate (TaN20%) were reliable then TaN5%. Extrapolated lifetimes for copper lines with barrier layer of TaN5% and TaN20% were 10064 (hr) and 4.6×1010 (hr) under current density stress by 1×105 A/cm2 at 40oC, respectively. New reliability model based on Black’s equation was established, where the Joule heating effect was taken into account.
It was found the large current density gradient (Jgrad) would lead to the major flux divergence at the interface of line and contact pads, moreover, the “vital failure” were normally located at the interface of line and contact pad. Furthermore, it showed that the copper mass transport would be carried out by the interface diffusion.
Keywords: Reliability, Electromigration, Thermal gradient, Barrier Layer, Copper Interconnects

Chinese Abstract
English Abstract
Acknowledgments
Contents
Figure Captions
Table Captions
Part I. Investigation of heat-treated ohmic contacts on p-GaN
Chapter 1. Introduction……………………………………………….1
1-1. An Overview…………………………………………...1
1-2. Issues on p-GaN Contacts……………………………2
1-3. Heat Treatment for p-GaN Metal Contacts………..4
1-4. Objects of This Study…………….……………….6
Chapter 2. Experimental Details……………………………...…..11
2-1. Introduction……………….…….……….…………….11
2-2. Experimental.………………………………….……....13
2-2-1. RTA Process…………………..……...…..………..13
2-2-2. Pre-Metallization-RTA Process…….…..…….…...13
2-2-3.The Standard Clean Process……………………….14
2-3. Circular Transmission Line Model (CTLM)……..15
Chapter 3. Results and Discussions……………………………...21
3-1. Introduction……………………………………………21
3-2. Results of RTA Experiments ……………………….22
3-2-1. Contact Resistance of p-GaN Metalized with Ti and Pd/Ti………………………………………………22
3-2-1-1. Introduction………………………………..22
3-2-1-2. Experimental Details………………………24
3-2-1-3. Results and Discussions…………………...24
3-2-1-4. Summary…………………………………..25
3-2-2. Contact Properties and Transparency of Pd and Pd/Ta/Pd Contacts for p-GaN……………………….26
3-2-2-1. Introduction………………………………..26
3-2-2-2. Experimental Details………………………26
3-2-2-3. Results and Discussions…………………...27
3-2-2-4. Summary…………………………………..28
3-3. Pre-Metallization-RTA of Pd ohmic contacts on p-GaN……………………………………………………..28
3-3-1. Introduction……………………………………….28
3-3-2. Experimental Details……………………………...29
3-3-3. Results and Discussions…………………………..29
3-3-4. Summary………………………………………….30
3-4. The Surface Treatment of p-GaN: An Introduction of Standard Clean Process………………….………….31
Chapter 4. Conclusions……………………………………………..40
Part II. Reliability of Copper Interconnect
Chapter 5. Introduction on Reliability of Copper……………42
5-1. Introduction……………………………………………42
5-2. Reliability of Interconnects………..……….….……42
Chapter 6. Experimental Details………………………………….49
6-1. Introduction……………………………………………49
6-2. Model of Electromigration: Black’s Equation...…49
6-3. Samples Preparation…………………………………53
6-4. Summary………………………………………………54
Chapter 7. Results and Discussions……………………………...58
7-1. Introduction……………………………………………58
7-2. Lift-off Process………………….….……..….……….59
7-3. Results and Discussions…….….…….…….….…….60
7-3-1. Times To Failure of Copper Lines with Different Barriers and Line Widths…………………………...60
7-3-2. Reliability of Interconnects with Different Line Widths………………………………………………61
7-3-3. Failure Distribution of Interconnects……………..61
7-3-4. Discussions………….…….…………….………..62
Chapter 8. Conclusion…………………….…………….……….….75
Reference…………………………………….………………..………..77
Vita……………………….…….…….………….…………..……...85
Publication List………………………………………………………87

PART I. Investigation of Contact Resistance for p-GaN
[1] Mitsuo Fukuda, "Optical Semiconductor Devices", Wiley series in microwave and optical engineering
[2] Shuji Nakamura; Gerhard Fasol, "The Blue Laser Diode", Springer, 1997
[3] Q. Z. Liu; S. S. Lau, "A Review of The Metal-GaN Contact Technology", Solid State Electronics, Vol. 42 No. 5, p.p. 677-691, 1998
[4] P.H. Holloway; T. —J. Kim; J. T. Trexler, "Interfacial reactions in the formation of ohmic contacts to wide bandgap semiconductors", Applied Surface Science 117/118, p.p. 362-372, 1997
[5] Kenji Shiojima, "Large Schottky barriers for Ni/p-GaN contacts", Applied Physics Letters, Vol. 74 No. 14, p.p. 1936-1938, 5 April 1999
[6] V. M. Bermudez, "Simple interpretation of metal/wurtzite-GaN barrier heights", J. Appl. Phys., Vol. 86 No. 2, p.p. 1170-1171, 15 July 1999
[7] T. Mori; T. Kozawa, "Schottky barriers and contact resistances on p-type GaN", Appl. Phys. Lett. 69(23), p.p.3537-3539, 1996
[8] W. Gotz; N. M. Johnson, "Deep level defects in Mg-doped, p-GaN grown by metalorganic chemical vapor deposition", Appl. Phys. Lett. 68(24), p.p. 3470-3472, 10 June 1996
[9] P. Hacke; H. Nakayama, "Deep levels in the upper band-gap region of lightly Mg-doped GaN", Appl. Phys. Lett. 68(10), p.p. 1362-1364, 1996
[10] S. Fisher; C. Wetzel, "On p-GaN doping in GaN-acceptor binding energies", Appl. Phys. Lett. 67(9), p.p.1298-1300, 28 August 1996
[11] S. J. Pearton, "Thermal Stability of 2H-implanted n- and p-type GaN", Appl. Phys. Lett. 73(12), p.p.1877-1879, 28 Sept. 1998
[12] S. M. Myers; A. F. Wright, "Equilibrium state of hydrogen in gallium nitride: Theory and experiment", J. Appl. Phys., Vol. 88 No. 8, p.p.4676- 4687, 12 Oct. 2000
[13] Jorg Neugebauer, chris G. Van de Walle, "Role of hydrogen in doping of GaN," Applied Physics Letter, Vol. 68, No. 13, 25 March 1996
[14] J. Kriz; K. Gottfried, "Determination of ohmic contacts to n-type 6H- and polycrystalline 3C-SiC using circular transmission line structures", Diamond and Related Materials 7, p.p. 77-80, 1998
[15] Gregory S. Marlow; Mukunda B. Das, "The Effects of Contact Size and Non-Zero Metal Resistance on The Determination of Specific Contact Resistance", Solid States Electronics, Vol. 25 No. 2, p.p. 91-94, 1982
[16] Jin-Kuo Ho, Charng-Shyang Jong, Chien C. Chiu, Chao-Nien Huang, Chin-Yuen Chen, Kwang-Kuo Shih, "Low-resistance ohmic contacts to p-type GaN," Applied Physics Letters, Vol. 74, No. 9, 1 March 1999
[17] Jin-Kuo Ho, Charng-Shyang Jong, Chien C. Chiu, Chao-Nien Huang, Kwang-Kuo Shih, Li-Chien Chen, Fu-Rong Chen, Ji-Jung Kai, "Low-resistance ohmic contacts to p-type GaN achieved by the oxidation of Ni/Au films," Journal of Applied Physics, Vol. 86, No. 8, 15 October 1999
[18] J. K. Sheu, Y. K. Su, G. C. Chi, W. C. Chen, C. Y. Chen, C. N. Huang, J. M. Hong, Y. C. Yu, C. W. Wang, E. K. Lin, "The Effect of thermal annealing on the Ni/Au contact of p-type GaN," Appl. Phys. Lett., Vol. 83(6), 15 March 1998
[19] D. Qiao, L. S. Yu, S. S. Lau, J. Y. Lin, H. X. Jiang, T. E. Haynes, "A Study of Au/Ni ohmic contacts to p-GaN," Journal of Applied Physics, Vol. 88, No. 7, 1 October 2000
[20] T. Maeda; Yasuo Koide, "Effects of NiO on electrical properties of NiAu-based ohmic contacts for p-type GaN", Appl. Phys. Lett. 75(26), 1999
[21] Li-Chien Chen; Fu-Rong Chen, "Microstructural investigation of oxidized Ni/Au ohmic contact to p-GaN", J. Appl. Phys., Vol. 86(7), 1999
[22] Li-Chien Chen; Jin-Kuo Ho, "Oxidized Ni/Pt and Ni/Au ohmic contacts to p-type GaN", Appl. Phys. Lett. Vol. 76 No. 25, 19 June 2000
[23] Chen-Fu Chu, C. C. Yu, Y. K. Wang, J. Y. Tsai, F. I. Lai, S. C. Wang, "Low-resistance ohmic contacts on p-type GaN using Ni/Pd/Au metallization," Applied Physics Letters, Vol. 77, No. 21, 20 November 2000
[24]Jong Kyu Kim, Jong-Lam Lee, Jae Won Lee, Hyun Eoi Shin, Yong Jo Park, Taeil Kim, "Low resistance Pd/Au ohmic contacts to p-type GaN using surface treatment," Applied Physics Letters, Vol. 73, No. 20, 1998
[25] Ja-Soon Jang, In-Sik Chang, Han-Ki Kim, Tae-Yeon Seong, Seonghoon Lee, Seong-Ju Park, "Low-resistance Pt/Ni/Au ohmic contacts to p-type GaN," Applied Physics Letters, Vol. 74, No. 1, 4 January 1999
[26] Y. —L. Li, E. F. Schubert, J. W. Graff, "Low-resistance ohmic contacts to p-type GaN," Applied Physics Letters, Vol. 76, No. 19, 8 May 2000
[27] Masaaki Suzuki, T. Kawakami, T. Arai, S. Kobayashi, Yauso Koide, T. Uemura, N. Shibata, Masanori Murakami, "Low-resistance Ta/Ti Ohmic conacts for p-type GaN," Applied Physics Letters, Vol. 74, No. 2, 1999
[28] Masaaki Suzuki, T. Arai, T. Kawakami, S. Kobayashi, Yauso Koide, "Formation and deterioration mechanisms of low-resistance TaTi ohmic contacts for p-GaN," Journal of Applied Physics, Vol. 86, No. 9, 1 November 1999
[29] L. Zhou, W. Lanford, A. T. Ping, I. Adesida, "Low resistance Ti/Pt/Au ohmic contacts to p-type GaN," Applied Physics Letters, Vol.76(23), 2000
[30] X. A. Cao; S.J. Pearton, "Thermal stability of WSix and W ohmic contacts on GaN", Materials Science & Engineering B59, p.p. 362-365, 1999
[31] J. K. Sheu; Y. K. Su, "High transparency Ni/Au ohmic contact to p-type GaN ", Appl. Phys. Lett., Vol. 74 No. 16, 1999
[32] O. Buchinsky; T. Margalith, "Transparent Contact to p-GaN: Indium Tin Oxide/ Titanium Nitride", IEEE FB1.3, 1999
[33] Ja-Soon Jang; Seong-Ju Park, "Ultrahigh transparency of Ni/Au ohmic contacts to surface-treated p-type GaN", J. Appl. Phys., Vol. 88 No 9, 2000
[34] Suparna Pal; Takashi Sugino, "Fabrication and characterization of metal/GaN contacts", Applied Surface Science 161, p.p. 263-267, 2000
[35] Boyer Howard E. ed./Gall Timothy L. ed., "Metals handbook," s.n., 1985
PART II. Reliability of copper interconnects
[1] J. R. Lloyd; J. Clemens; R. Snede, "Copper metallization reliability" , Microelectronics Reliability 39, p.p. 1595-1602, 1999.
[2] Sakimoto, M.; Itoo, T.; Fujii, T.; Yamaguchi, H.; Eguchi, K., "Temperature measurement of Al metallization and the study of Black's model in high current density", IEEE Reliability Physics Symposium, 33rd Annual Proceedings. , pp. 333-341, 1995.
[3] Brisbin, D.; Turner, T., "Isothermal versus standard wafer electromigration test for the characterization of metal systems" , IEEE Integrated Reliability Workshop Final Report, pp. 136 -137, 1997.
[4] M. L. Dreyer; K. Y. Fu; C. J. Varker, "An electromigration model that includes the effects of microstructure and Temperature on mass transport" , J. Appl. Phys. 73, pp. 4894, 1993.
[5] Kim Jonggook; Tyree, V.C.; Crowell, C.R., "Temperature gradient effects in electromigration using an extended transition probability model and temperature gradient free tests. I. Transition probability model", IEEE Integrated Reliability Workshop Final Report, pp. 24 -40, 1999.
[6] Changsup Ryu; Kee-Won Kwon; Alvin L. S. Loke; Haebum Lee; Takeshi Nogami; Valery M. Dubin, "Microstructure and Reliability of Copper InterconnectS", IEEE Transaction on Electron Devices, Vol. 40,No. 6, pp. 1113-1120, JUNE 1999.
[7] P. G. Ghate, "Electromigration-induced Failures in VLSI interconnects*", IEEE 20th Annual Proceedings Reliability Physics Symp., p.113-120, 1982
[8] L. Arnaud; R. Gonella; G. Tartavel; J. Torres; C. Gounelle; Y. Gobil; Y. Morand, "Electromigration failure modes in damascene copper interconnects", Microelectronics Reliability, pp. 1029-1034, 1998.
[9] J.R. Lloyd; J.J. Clement, "Electromigration in copper conductors" , Thin Solid Films, pp. 135-141, 1995.
[10] Lucile Arnaud; G. Tartavel; T. Berger; D. Mariolle; Y. Gobil; I. Touet, "Microstructure and Electromigration in copper Damascene lines", IEEE 37th Annual International Reliability Physics Symp., pp. 263-269, 1999.
[11] N.D. MaCusker; H.S. Gamble; B.M. Armstrong, "Surface Electromigration in Copper Interconnects", IEEE 37th Annual International Reliability Physics Symp., pp. 270-276, 1999.
[12] James R. Black, "Electromigration Failure Modes in Aluminum Metallization for Semiconductor Devices", Proceedings of the IEEE, Vol. 57, No. 9, September 1969.
[13] C. K. Hu; J. M. E. Harper, "Copper Interconnects and Reliability" , Materials Chemistry and Physics, pp. 5-16, 1998.
[14] Robert E. Jones; Larry D. Smith, "A new wafer-level isothermal Joule-heated electromigration test for rapid testing of integrated circuit interconnect", J. Appl. Phys., Vol. 61, 1 May, 1987.
[15] J. R. Lloyd, " Electromigration", J. of Met., pp. 54-56, July, 1984.
[16] S. H. Lee; D. Kwon, "The analysis of thermal stress effect on electromigration failure time in Al alloy thin-film interconnects" , Thin Solid Films 341, p.p. 136-139, 1999
[17] M. A. Korhonen; P. Borgesen, "Stress evolution due to electromigration in confined metal lines", J. Appl. Phys. 73(8), p.p. 3790- 3798, 15 April 1993
[18] I. A. Blech; Conyers Herring, "Stress generation by electromigration", Applied Physics Letters, V0l. 29 (3), 1 August 1976
[19] S. Foley; A Scorzoni; R. Balboni, "A comparison between normally and highly accelerated electromigration tests", Microelectronics Reliability 38, p.p. 1021-1027, 1998
[20] C. —K. Hu; J. M. E. Harper, "Copper interconnections and reliability", Materials chemistry and physics 52, p.p. 5-16, 1998
[21] C. —K. Hu; R. Rosenberg, "Scaling Effect on Electromigration in On-Chip Cu Wiring", IEEE IITC99, p.p. 267-269, 1999
[22] W. C. Shih; A. L. Greer, "Electromigration damage and failure distributions in Al-4 wt% Cu interconnects" , J. Appl. Phys., Vol. 84 No. 5, p.p. 2551-2557, 1998
[23] P. B. Ghate, "Some observations on the electromigration in Aluminum ", Applied Physics Letters, Vol. 11 No 1, p.p. 14-16, 1 July 1967
[24] M. J. Attardo; R. Rosenberg, "Electromigration Damage in Aluminum Film Conductors", J. Appl. Phys., Vol. 41 No. 6, May 1970
[25] J. R. Lloyd; R. N. Steagall, "Activation energy for electromigration failure in Al-Cu conductor stripes covered with polymide" , J. Appl. Phys. 60(3), p.p. 1235-1237, 1 August 1986
[26] J. R. Lloyd, "Electromigration in Al-Cu thin films with polyimide passivation", Thin Solid Films 91, p.p. 175-182, 1982
[27] C. C. Wo, "Barrier Properties of TaNx and TaSixNy for Cu Metallization", Graduate Thesis of FCU, 2000
[28] D. G. Pierce, "Electromigration: A Review", Microelectron. Relaib., Vol. 37 No. 7, p.p. 1053-1072, 1997
[29] K. N. Tu; J. W. Mayer, "Electromigration in Thin Films", Thin Films-Interdiffusion and Reactions chapter 8, Wiley, New York, p.p. 243, 1978

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 區鉅龍(1996),「印尼政治民主化的困境」,問題與研究,第35卷,第12期,頁89-97。
2. 盧天民(1999),「由1997年夏東南亞貨幣經濟危機看資本帳自由化的利弊與實施有成的若干必要條件」,國際金融參考資料,第44輯,頁126-131。
3. 張明寬(1999),「金融風暴及IMF」,國際金融參考資料,第44輯,頁117-121。
4. 馬千惠(1994),「資本流入與資本帳開放-間論東協三國的經驗與我國的啟示」,中央銀行季刊,第16卷,第3期,頁52-59。
5. 陳進安(1993),「阿根廷經濟概況」,中國商銀月刊,第12卷,第2期,頁1-5。
6. 許嘉棟(1999),「開放資本自由移動之影響與因應」,中央銀行季刊,第21卷,第4期,頁23-36。
7. 彭淮南(1995),「墨西哥金融危機」,中央銀行季刊,第17卷,第1期,頁12-20。
8. 姚清瀛(1999c),「資本自由化與金融危機」,國際金融參考資料,第44輯,頁152-156。
9. 姚清瀛(1999b),「南韓金融危機與金融改革」,國際金融參考資料,第44輯,頁122-125。
10. 姚清瀛(1999a),「南韓銀行體系的現況及展望」,國際金融參考資料,第44輯,頁26-30。
11. 胡春田(1999b),「由東亞金融風暴看資本帳之結構問題與開放政策-中、泰、印、韓之比較」,中央銀行季刊,第21卷,第3期,頁13-48。
12. 金榮勇(1998),「東南亞金融風暴的起因、影響與展望」,問題與研究,第37卷,第1期,頁1-14。
13. 吳中書(1999a),「台灣匯率與資本移動關聯性之探討」,中央銀行季刊,第21卷,第2期,頁48-59。
14. 李榮謙、游淑雅(2000),「亞洲金融危機:政策反應、展望與啟示」,國際金融參考資料,第45輯,頁15-26。