(18.207.253.100) 您好!臺灣時間:2021/05/06 08:44
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:蔡尚亨
研究生(外文):Shang-Heng, Tsai
論文名稱:氫鍵效應對能量轉移效率及放光之量子產率的影響在Quinacridone與4’-(2-Pyridin-4-yl-Vinyl)-Biphenyl-4-ol的系統中
論文名稱(外文):The Hydrogen Bonding Effect on the efficiency of Energy Transfer and Quantum Yield of Luminescence in Quinacridone and 4’-( 2-Pyridin-4-yl-Vinyl )-Biphenyl-4-ol
指導教授:張鎮平張鎮平引用關係
指導教授(外文):Chen-Pin Chang
學位類別:碩士
校院名稱:輔仁大學
系所名稱:化學系
學門:自然科學學門
學類:化學學類
論文種類:學術論文
論文出版年:2001
畢業學年度:89
語文別:中文
論文頁數:107
中文關鍵詞:氫鍵效應能量轉移放光之量子產率
外文關鍵詞:Hydrogen Bonding EffectEnergy TransferQuantum Yield of Luminescence
相關次數:
  • 被引用被引用:0
  • 點閱點閱:161
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
摘要
我們主要是要來討論放光系統中的能量轉移現象,以及消光的反應機制。第一個部分是研究氫鍵對QA分子能量轉移現象的影響。因此分別將QA分子處於在不同的濃度與不同的環境下,測量其由Alq3當主體的放射光譜、臨界能量轉移距離、能量轉移速率及相對量子產率,並且還用一些QA分子的衍生物,這些QA分子衍生物都具備不會產生氫鍵的特性,以便可以與QA分子來做為比較,這些對於有氫鍵的分子能量轉移之研究有相當的幫助。
第二個部分是討論PD-1G以及PDTE本身量子產率很高,但是由Alq3當主體的能量轉移的現象卻不佳之研究。PD-1G與PDTE本身的吸收光譜與Alq3的放設光譜重疊的面績很大,而且由Alq3分別與兩者混合後的螢光光譜與自己本身的螢光光譜相比較後,可以得知PD-1G與PDTE都有吸收Alq3所放出來的能量,但是從放射光譜中,卻沒有將吸收到的能量放射出來,因此,我們從能量轉移的生命期、臨界能量轉移距離、能量轉移速率來探討其中的原因。
第三個部分是討論PVP在加入不同的消光劑後能量消光的實驗。從吸收光譜與放設光譜的變化,並利用Stern-Volmer eq.以及測量PVP在加入不同的消光劑後的生命期,來判別出是動態消光機制,還是靜態消光機制。

ABSTRACT
In this thesis, we investigate energy transfer phenomena and quenching mechanisms in the emitting systems. In the first part, the effects of hydrogen bonding on energy transfer of QA molecules are studied. We use the Alq3 as the host and measure the emission spectra, the critical energy transfer distances, the energy transfer rates and the relative quantum yields of QA molecules in different concentrations and conditions. Some QA derivatives that can not form H-bonding are also studied in order to compare with the results of QA molecules. These studies are helpful in understanding the energy transfer phenomena of H-bonding molecules.
In the second part, we study the energy transfer of PD-1G and PDTE. While both compounds have high quantum yields, the efficiency of energy transfer from Alq3 is very poor. The absorption spectra of PD-1G and PDTE both significantly overlap with the fluorescence spectra of Alq3, and PD-1G and PDTE both get the energy from the Alq3. However, the fluorescence spectra reveal that PD-1G and PDTE do not emit the energy absorbed from the Alq3. Therefore we would like to find the reasons by exploring the lifetimes of the energy transfer processes, the critical energy transfer distances, and the energy transfer rates.
In the third part, we investigate cpd5’s quenching mechanisms upon adding different quenchers. The absorption and emission spectra, Stern-Volmer eq, and lifetime measurements are used in determining the quenching mechanism, dynamic or static, of cpd5.

目錄
中文摘要
英文摘要
一、前言……………………………………...…... 1
二、文獻回顧……………………………..…..….. 3
1. 有機薄膜發光二極體的演進……………………… 3
2. 電子能量轉移的理論………….………...………….5
3. Forster能量轉移的簡介………………...…….….....7
4. 消光反應機制………………………..….…………11
5. Excimer的形成……………………….……………12
6. Exciplex的形成………………….……...………... 12
7. 溶劑效應………………………….………….…….13
8. 能量轉移速率公式推導………...………..………..15
9. 發光體材料…………………………...……...…… 16
三、實驗藥品…………………………………….18
四、實驗儀器…………………………..….……..22
五、實驗部分與討論……………...………….….23
1.Alq3對QA之能量轉移實驗…….…………………23
2.Alq3對PD-1G與PDTE之能量轉移實驗…………41
3.PVP之消光反應機制實驗………………………...48
六、結論……………………………………….58
七、參考文獻…………………………….…….60

參考文獻
1. M. Klessinger, Excited State and Photochemistry,Oxford, London, (1978) Chap. 4.
2. Th. Förster, Ann.Physik: 2, (1948), 55.
3. B. Wieb Ban Der Weer, G. Coker, 3. S. —Y. Simon Chen, Resonance Energy Transfer VCH, New York, (1994), Chap2.
4. T, Förster, Discuss Faraday Soc. 21, (1959), 7.
5. J. Chem. Phys. 41, (1964), 3037.
6. J. R. Lakowicz, Principles of Fluorescence Spectroscopy, Plenum Press, New York, (1983), Chap. 9.
7. J. D. Carpenter, B. S. Ault: J. Phys. Chem. 95, (1991), 3507.
8. M. Klessinger, J. Michl, in “ Excited State and Photochemistry of Organic Molecules “VCH, New York, (1995), Chap. 2.
9. C. W. Tang, S. A. VanSlyke and C. H. Chen: J. Appl. Phys. 65, (1989), 3610.
10. J. Shi and C. W. Tang: Appl. Phys. Lett. 70, (1997), 1665.
11. T. Tsutsui, N. Takada. S. Saito and E. Ogino: Appl. Phys. Lett.65, (1994), 1868.
12. M. Matsumura, Y. Jinde. T. Akai and T. Kimura: Jan. J. Appl. Phys. 35, (1996), 5735.
13. M. Matsumura, Y. Jinde: Appl. Phys. Lett. 73, (1998), 2872.
14. J. Kalinowshi, P. Di Marco, N. Camaioni, V. Fattori, W. Stampor. And J. Duff: Syn. Metals. 76, (1996), 77.
15. T. Tsutsui, E. Aminaka. Y. Fujita, Y. Hamada. and S. Saito: Syn Metals. 55, (1993), 4157.
16. J. Shi, and C. W. Tang: Appl. Phys. Lett. 70, (1997), 1665.
17. T. Wakimoto, Y. Yonemoto, J. Funaki, and M. Nomura: Syn. Metals. 91, (1997), 15.
18. J. Kalinowshi, W. Stampor, P. Di Marco, and V. Fattori: Chem. Phys. 182, (1994), 341.
19. U. Keller, K. Mullen, S. De Feyter, and F. C. De Schryver: Adv. Mater. 8, (1996),490.
20. J. L. Musfeldt, D. B. Tanner, A. J. Paine: J. Opt. Soc. Am. A. 10, (1993), 2648.
21. H. Nakahara, K. Kitabara, H. Nishi: Chem. Lett. 10, (1992), 711.
22. E. E. Jaffe: J. Oil & Color Chemists’ Assoc. Surface Coating Intern. 75, (1992), 24
23. J. Kalinowski, W. Stampor. P. DiMarco and V. Fattori: Chem. Phys. 182, (1994), 341.
24. N. Nakashima, Y. Kume and N. Mataga: J. Phys. Chem. 79, (1975), 1788.
25. A. D. Walser, I. Sokvlik, R. Pristly and T. Dorsinville: Appl. Phys. Lett. 69, (1996), 1677.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔