(3.238.130.97) 您好!臺灣時間:2021/05/13 23:42
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:徐美玉
論文名稱:共軛naphthol系統和triethylamine/formaldehyde間藉由氫鍵所形成的激發態錯合物發光現象之探討
論文名稱(外文):The Study of Luminescence of Hydrogen Bond Exciplex formed by Conjugated Naphthol and Triethylamine/Formaldehyde
指導教授:張鎮平張鎮平引用關係
學位類別:碩士
校院名稱:輔仁大學
系所名稱:化學系
學門:自然科學學門
學類:化學學類
論文種類:學術論文
論文出版年:2001
畢業學年度:89
語文別:中文
論文頁數:135
中文關鍵詞:激發態錯合物氫鍵電偶極矩
外文關鍵詞:exciplexdipole momenthydrogen bond
相關次數:
  • 被引用被引用:0
  • 點閱點閱:116
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
激態錯合體(exciplex) 和氫鍵結這兩單項系統之光物理時常被討論到,但是由氫鍵所產生的exciplex卻較為少見,我們想要了解具有兩種構造化合物之光物理現象,我們所選的化合物為PVN這個化合物具pyridine group與雙鍵及naphthol group,也就是其具有相當長的共軛結構之naphthol共分成三部分來討論 (1)激發態之pKa的變化 (2) 激發態之 dipole moment的改變(3)激發態PVN與triethylamine及formaldehyde所形成之exciplex之光物理現象。
在pKa方面希望知道當加上一個共軛系統的時候其酸度於激發態是增加或是減少,在電偶極矩(dipole moment)方面是想得知分子結構變化對激發態之dipole moment 有無改變。希望藉由這些討論能夠獲得設計分子上應注意或可改善的地方,而使得分子的發光度較好。於動力學的研究方面,可幫助我們解釋消光機制為何,進一步去阻止這些消光過程的產生,讓分子在某種情境條件下能夠達到較高的發光度,這方面的研究成果將有助於OLED分子結構之設計。

The photophysics of exciplexes and hydrogen bonding complexes has been widely studied. Nevertheless, it is not common to find examples in which the exciplex is formed by hydrogen bonding. In this thesis, we would like to investigate the photophysics of a compound that is composed of two functional groups. The compound studied is PVN, in which the naphthol and the pyridine group are connected by a CH=CH linker. Therefore, the PVN is a long conjugated system. The issues discussed include (1) the change of the excited state pKa (2) the change of the excited state dipole moment (3) the photophysics of the exciplex formed by excited PVN and triethylamine and formaldehyde.
As for the pKa, we would like to know does the acidity of naphthol increase or decrease in the excited state if a conjugated system is added. Regarding the dipole moment, we wish to know whether the changes of the molecular structure enhance the excited state dipole moment. These discussions are expected to provide us valuable information and improve our knowledge in designing molecules that have better light emitting properties. The studies of the dynamics help us to understand the quenching mechanism, which in turn, increase our ability in preventing these quenching processes and in making the molecules emit light more efficiently. These studies will be very helpful in designing OLED molecular structure.

中文摘要
英文摘要
Ⅰ. 前言…………………………………………………………………………… 1
Ⅱ. 理論……………………………………………………………………….. 7
1. exciplex 之形成與衰減 …………………………………………………..7
2. 消光反應機制 ……………………………………………………………….10
3. 溶劑效應 …………………………………………………………………….12
4. 激發態偶極矩 ……………………………………………………………….17
5. pKa和pKa*的獲得 ……………………………………………………………18
6. 結合常數的計算 …………………………………………………………….22
7. 動力學常數的計算 ………………………………………………………….23
Ⅲ. 實驗藥品和儀器 ……………………………………………………………. 25
1. 藥品………………………………………………………………………….25
2. 儀器………………………………………………………………………….26
Ⅳ.實驗結果與討論………………………………………………………………..27
1.PVN於各種Solvent中 dipole moment的變化…………………………..27
1-1 PVN於各種溶液中基態和激發態間dipole moment的變化……….. 27
1-2 PVN於各種溶液中加入TEA基態和激發態間 dipole moment
的變化 :…………………………………………………………………28
2. pKa和pKa*的討論………………………………………………………….30
2-1 pKa實驗原因及步驟:…………………………..…………………..30
2-2 PVN於基態pKa的獲得:……………………………………………..31
2-3 PVN於激發態pKa*的獲得:…………………………………………31
2-4 結果討論:……………………………………………………………32
3.PVN於formaldehyde和H2O溶液中現象之探討……………………………34
3-1 PVN於formaldehyde中現象之探討:…………………………………34
3-2 PVN於H2O中現象之探討:……………………………………………….35
4. PVN 結合常數 動力學生命其之探討……………………………………….38
4-1 PVN於各種溶液中加入TEA結合常數之討論:……………………38
A: PVN於非醇類溶液中結合常數之討論…………………………………38
B: PVN於醇類溶液中加入TEA結合常數的討論……………………….41
C:結果比較…………………………………………………………………42
4-2 PVN 於各種溶液中加入高濃度TEA動力學的探討…………………43
A. PVN 於非醇類溶液中高濃度TEA動力學的探討:…………………..43
B. PVN 於醇類溶液中加入高濃度TEA動力學探討:……………………49
C. PVN和2-Naphthol 於1,4溶液中加入高濃度TEA
動力學比較:…………………………………………………………53
D.結果比較:………………………………………………………………54
4-3 探討PVN和TEA exciplex形成生命期之變化…………………….55
A:於非醇類溶液中加入高濃度TEA其生命期的的討論……………….57
B:於醇類溶液中加入高濃度TEA其生命期的的討論………………….67
C:結論…………………………………………………………………….69
4-4 PVN於各種溶液中excitation圖和生命期的探討 ……………….71
Ⅴ.結論………………………………………………………………………78
Ⅵ.reference……………………………………………………………….79

(1) C. A. Parker and C. G. Hatchard, Trans. Faraday Soc.
59,284 (1963)
(2) N. H. C. Cooke and B. S. Solomon, J. phys. Chem.
76,3563 (1972)
(3) N. Mataga, Y. Kawasaki, and Y. Torihashi, Theo. Chem. Act.
2,168 (1964)
(4) E. L. Wehry and L. B. Rogers, J. Am. Chem. Soc. 88,351 (1996)
(5) A. Matsuzaki, S. Nagakura and K. Yoshihara, Bull. Chem. Soc. Jap.47,1152 (1974)
(6) M. S. Walker, I. W. Bednar, R. Lumary, J. Chem. Phys. 45,3455 ; 47,1020 (1966)
(7) K. Kikuchi, Y. Takahashi, T. Katagiri, T. Niwa, M. Hosi and T. Miyashi, Chem. Phys.180,403 (1991)
(8) J. A. Barltrop and J. D. Coyle, Principle of photochemistry, Ch.2, Ch.4 (1978)
(9) A. Weller, in. S. Claesson(ed), Fast Reactions and Primary.
Process in Chemical Kinetics (1967)
(10) A. Knibbe, K. Rolling, F. P. Schafer and A. Weller, Chem.
Phys. 47,1184 (1964)
(11) J. R. Lakowicz, Principle of Fluorescence Spectroscopy,
Plenum Press, Ch.9,Ch.12 (1983)
(12) N. Mataga, T. Kubota, Molecular Interaction and
Electronic Spectra, Ch.8 (1970)
(13) K. K. R. Mukherjee, Fundamentals of Photochemistry,
Ch.4 (1977)
(14) M. K. Nazeeruddin, T. A. Kaden and M. Gratzel, Inorg.
Chem. 39,4542 (2000)
(15) P. B. Bisht, G. C. Joshi, H. B. Tripathi, Chem. Phys.
Lett. 237,356 (1995)
(16) S. P. Van, G. S. Hammond, J. Am. Soc. 100,3895 (1978)

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔