跳到主要內容

臺灣博碩士論文加值系統

(44.211.117.197) 您好!臺灣時間:2024/05/23 11:46
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:王永昇
研究生(外文):Wang, Yun Shen
論文名稱:鴛鴦湖小球藻對碳利用的研究
論文名稱(外文):Study on the Utilization of Carbon Sources by Chlorella sp. Isolated from the Yuanyang Lake
指導教授:陳擎霞陳擎霞引用關係吳俊宗
指導教授(外文):Chen, Dhing HsiaWu, Jiunn Tzong
學位類別:碩士
校院名稱:輔仁大學
系所名稱:生物學系
學門:生命科學學門
學類:生物學類
論文種類:學術論文
論文出版年:2001
畢業學年度:89
語文別:中文
中文關鍵詞:鴛鴦湖小球藻碳源磷酸烯醇丙酮酸羧化酶碳酸酐酶二磷酸核酮糖羧化酶-加氧酶穩定性碳同位素
外文關鍵詞:Yuanyang lakeChlorella sp.carbon sourcephosphoenolpyruvate carboxylasecarbonic anhydraseD-ribulose-15- bisphosphate carboxylase - oxygenasestable carbon isotope
相關次數:
  • 被引用被引用:0
  • 點閱點閱:389
  • 評分評分:
  • 下載下載:49
  • 收藏至我的研究室書目清單書目收藏:1
本研究以從鴛鴦湖湖水中分離之小球藻(Chlorella sp.)作為研究材料,分別比較生長在含有有機碳但不供給二氧化碳,及供給二氧化碳為碳源時,藻細胞對碳源利用的方式和碳反應途徑的差異。結果顯示在無二氧化碳供應而含有機碳之情況下,藻細胞會利用有機碳生長,但生長速率、葉綠素含量、光合作用速率及呼吸作用速率都比以二氧化碳為碳源的藻細胞低。從分析穩定性碳同位素比值(δ13C)之差異發現,在供給二氧化碳的條件下,小球藻偏向C4固碳方式。進一步分析參與光合作用碳反應之酵素活性,顯示以有機碳為碳源的藻細胞,磷酸烯醇丙酮酸羧化酶(phosphoenolpyruvate carboxylase)活性比以二氧化碳為碳源的藻細胞低;而碳酸酐酶(carbonic anhydrase)與二磷酸核酮糖羧化酶-加氧酶(D-ribulose-1,5- bisphosphate carboxylase - oxygenase)活性比較高,表示在缺乏二氧化碳時藻細胞的二氧化碳濃縮機制(CO2 concentrating mechanism)活性會提高,以有機碳為碳源的藻細胞比以二氧化碳為碳源的藻細胞偏向C3固碳方式。本研究的結論,當缺乏二氧化碳時,小球藻可利用有機碳代替二氧化碳為碳源,並且改變細胞內的光合作用固碳方式。
Abstract
The utilization of carbon sources by the green algae Chlorella sp. isolated from the Yuanyang lake was studied. The growth of algal cells in the presence of concentrated lake water containing organic carbons was compared with those cultivated with CO2 as the sole carbon source ( i.e. autotrophic ). Analysis of the δ13C in the cells ascertained that algal cells grew heterotrophically when culture medium was depleted in CO2 . In the case, values of cellular δ13C can be used as the indicator of trophy. The values of the overall discrimination analysis showed that autotrophic cells utilize carbon sources via C4 pathway, whereas heterotrophic ones via C3 pathway. Under heterotrophic growth conditions, the growth rate and chlorophyll content were lower, compared with those grown under autotrophic conditions. Enzymatic analyses showed that the activities of enzymes involving in carbon utilization varied under different carbon sources. A lowering in phosphoenolpyruvate carboxylase activity was associated with enhancement in carbonic anhydrase avtivity and D-ribulose-1,5-bisphosphate carboxylase-oxygenase activity when algal cells were transferred from autotrophic to heterotrophic growth conditions. The present study proposed the regulation of carbon metabolism in algal cells when organic carbons instead of CO2 were used as the carbon source .
目 錄
中 文 摘 要 ...........................1
英 文 摘 要 ...........................2
縮 寫 表 ...........................3
一﹑前 言 ...........................4
二﹑材料與方法 ..........................11
三﹑結 果 ...........................27
四﹑討 論 ...........................35
五﹑結 論 ...........................42
六﹑誌 謝 ...........................43
七﹑參考文獻 ...........................44
表 ...........................49
圖 ...........................52
參考文獻
林則桐、邱文良(1990)公告自然保留區之植被調查(III)。農委會79年生態研究第005號。
柳榗(1987)鴛鴦湖自然保留區之植物生態研究。臺灣植物資源與保育論文集。 pp. 1-22。
Ahmad I., Hellebust J.A.(1990)Regulation of chloroplast development by nitrogen source and growth conditions in a Chlorella protothecoides strain. Plant Physiol. 94: 944-949.
Amoroso G., Weber C., Sültemeyer D., Fock H.(1996)Intracellar carbonic anhydrase activities in Dunaliella tertiolecta(Butcher)and Chlamydomonas reinhardtii(Dangeard)in relation to inorganic carbon concentration during growth: further evidence for the existence of two distinct carbonic anhydrases associated with the chloroplasts. Planta 199: 177-184.
Ashton A.R., Burnell J.N., Furbank R.T., Jenkins C.L.D., Hatch M.D. (1990)Enzymes of C4 photosynthesis. In Lea P.J.(eds), Enzymes of Primary Metabolism, Academic Press, Inc., San Diego, pp. 39-73.
Badger M.R., Price G.D.(1994)The role carbonic anhydrase in photosynthesis. Annu. Rev. Plant Physol. Plant Mol. Biol. 45: 369-392.
Bollag D.M., Edelstein S.J.(1991)Protein Methods. Wiley-Liss, Inc., New York, pp. 56-59.
Bollman R.C., Robinson G.G.C.(1977)The kinetics of organic acid uptake by three Chlorophyta in axenic culture. J. Phycol. 13: 1-5.
Boutton T.W.(1991)Stable carbon isotope ratios of natural materials: I. Sample preparation and mass spectrometric analysis. In Coleman D.C., Fry B.(eds), Carbon Isotope Techniques, Academic Press, Inc., San Diego, pp. 158-159.
Chou, C.H., Chen T.Y., Liao C.C., Peng C.I.(2000)Long-term ecological research in the Yuanyang Lake forest ecosystem I. Vegetation composition and analysis. Bot. Bull. Acad. Sin. 41: 61-72.
Colman B., Brickell P.C., Gehl K.A.(1986)The uptake of mannitol and sorbitol by a species of Chlorella(Chlorophyceas). 22: 436-440.
Döhler G.(1974)C4-pathway of photosynthesis in the blue-green alga Anacystis nidulans. Planta 118: 259-269.
Ehleringer J.R.(1991)13C/12C fractionation and its utility in terrestrial plant studies. In Coleman D.C., Fry B.(eds), Carbon Isotope Techniques, Academic Press, Inc., San Diego, pp. 194-195.
Ehleringer J.R., Osmond C.B.(1989)Stable isotope. In Pearcy R.W., Ehleringer J., Mooney H.A., Rundel P.W.(eds), Plant Physiological Ecology. Field Methods and Instrumentation. Chapman and Hall, New York, pp. 281-290.
Endo H., Sansawa H., NaKajima K.(1977)Studies on Chlorella regularis, heterotrophic fast-growth strain II. Mixotrophic growth in relation to light intensity and acetate concentration. Plant & Cell Physiol. 18: 199-205.
Graham L.E., Wilcox L.W.(2000)Algae. Prentice-Hall, Inc., New York, pp. 32-37.
Hawkins R.L.(1999)Utilization of xylose for growth by the eukaryotic alga, Chlorella. Cur. Microbiol. 38: 360-363.
Hilgarth C., Sauer N., Tanner W.(1991)Glucose increases the expression of the ATP/ADP translocator and the glyceraldehyde-3-phosphate dehydrogenase genes in Chlorella. J. Biol. Chem. 266: 24044-24047.
Kao W.Y., Chiu Y.S., Chen W.H.(2000)Vertical profiles of CO2 concentration and d13C values in an subalpine forest of Taiwan. Bot. Bull. Acad. Sin. 41: 213-218.
Komor E.(1973)Proton coupled hexose transport in Chlorella vulgaris. FEBS Lett. 38: 16-18.
Krampitz L.O., Yarris C.E.(1983)Glycolate formation and excretion by Chlorella pyrenoidosa and Netrium digitus. Plant Physiol. 72: 1084-1087.
Krebs C.J.(1985)Ecology: The Experimental Analysis of Distribution and Abundance, third edition, Harper & Row, Publishers, Inc., New York, p. 212.
Kuhl A.(1962)Zur Physiologie der Speicherung kondensierter anorganischer Phosphate in Chlorella. Vort. Ges. Bot. N.F. 1: 157-166.
Maberly S.C., Raven J.A., Johnston A.M.(1992)Discrimination between 12C and 13C by marine plants. Oecologia 91: 481-492.
MacKinney G.(1941)Absorption of light by chlorophyll solutions. J. Biol. Chem. 140: 312-315.
McCullough W., John P.C.L.(1972)Control of de novo isocitrate lyase synthesis in Chlorella. Nature 239: 402-405.
Meyer C.R., Rustin P., Wedding R.T.(1988)A simple and accurate spectrophotometric assay for phosphoenolpyruvate carboxylase activity. Plant Physiol. 86: 325-328.
Nieva M., Valiente E.F.(1996)Inorganic carbon transport and fixation in cell of Anabaena variabilis adapted to mixotrophic conditions. Plant Cell Physiol. 37: 1-7.
O.I. Analytical(1995)Model 1010 Total Organic Carbon Analyzer Operator''s Manual. second edition. O.I. Analytical, Texas. 73 pp.
Oh-Hama T., Miyachi S.(1988)Chlorella. In Borowitzka M.A., Borowitzka L.J.(eds), Micro-Algal Biotechnology. Cambridge University Press, Cambridge, pp. 3-26.
Post A.F., Cohen I., Romen E.(1994)Characterization of two Chlorella vulgaris(Chlorophyceae)strain isolated from wastewater oxidation ponds. J. Phycol. 30: 950-954.
Shiraiwa Y., Miyachi S.(1983)Factors controlling induction of carbonic anhydrase and efficiency of photosynthesis in Chlorella vulgaris 11h cells. Plant & Cell Physiol. 24: 919-923.
Shiraiwa Y., Goyal A., Tolbert N.E.(1993)Alkalization of the medium by unicellular green algae during uptake of dissolved inorganic carbon. Plant Cell Physiol. 34: 649-657.
Tanner W., Kandler O.(1967)Die Abhangigkeit der Adaptation der Glucose-Aufnahme von der oxydativen und photosynthetischen phosphorylierung bei Chlorella vulgaris. Z. Pflanzenphysiol. 58: 24-32.
Tanner W. (2000) The Chlorella hexose/H+-symporters. Int. Rev. Cyt. 200: 101-141.
Turpin D.H., Vanlerberghe G.C.,Amory A.M., Guy R.D.(1991)The inorganic carbon requirements for nitrogen assimilation. Can. J. Bot. 69: 1139-1145.
Umino Y., Shiraiwa Y.(1991)Effect of metabolites on carbonic anhydrase induction in Chlorella regularis. J. Plant Physiol 139: 41-44.
van den Hoek C., Mann D.G., Jahns H.M.(1995)Algae: An Introduction to Phycology. Cambridge University Press, Cambridge, pp. 365.
Vanlerberghe G.C., Schuller K.A., Smith R.G., Feil R., Plaxton W.C., Turpin D.H.(1990)Relationship between NH4+ assimilation rate and in vivo phosphoenolpyruvate carboxylaseactivity: regulation of anaplerotic carbon flow in the green alga Selenastrum mintum. Plant Physiol. 94: 284-290.
Villarejo A., Orús M.I., Martínez F.(1995)Coordination of photosynthetic and respiration metabolism in Chlorella vulgaris UAM 101 in the light. Physiol. Plant. 94: 680-686.
Wu J.T., Chang S.C.(1996)Relation of the diatom assemblages in the surface sediments to the pH values of an alpine lake in Taiwan. Arch. Hydrobiol. 137: 551-563.
Wu J.T., Chang S.C., Wang Y.S., Wang Y.F., Hsu M.K.(2001)Characteristics of the acidic environment of the Yuanyang Lake(Taiwan). Bot. Bull. Acad. Sin. 42: 17-22.
Yokota A., Kitaoka S.(1987)Rates of glycolate synthesis and metabolism during photosynthesis of Euglena and microalgae grown on low CO2. Planta 170: 181-189.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top