(18.204.227.34) 您好!臺灣時間:2021/05/17 05:47
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:莊景芳
研究生(外文):Ching-Fang Chuang
論文名稱:高壓高頻電源供應器在行波管放大器上的應用
論文名稱(外文):Application of High Voltage and High Frequency Power Supply for the Traveling Wave Tube Circuit System
指導教授:李永勳
指導教授(外文):Yuang-Shung Lee Ph.D
學位類別:碩士
校院名稱:輔仁大學
系所名稱:電子工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2001
畢業學年度:89
語文別:中文
論文頁數:71
中文關鍵詞:空白
外文關鍵詞:Space
相關次數:
  • 被引用被引用:0
  • 點閱點閱:248
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
摘要
行波管(Traveling Wave Tube ),TWT是種能隨著輸入信號控制,即可改變RF信號強度與頻率的變化的一種裝置,因此它在RF應用上常廣泛的應用於空用杜卜勒雷達發射機、電子反制系統、飛彈系統、地面通訊、人造衛星通訊、電視轉播臺、接收用低雜訊放大器、寬頻帶雷達發射機、相位點陣波源…等的電子系統。它只需要給它一種可靠而且穩定度較佳的輸入電源,即可勝任各種挑戰,而它又因為功率的不同操作在不同的頻率,工作點也不盡相同,因此坊間的高壓高頻電源供應器很難勝任它的需求,因此本文提出適應性較高的降壓電流饋入型全橋功率轉換器,從拓樸開始分析作為設計與製作的藍本,經過長時間的測試,確實證明所設計的高壓高頻電源供應器可靠性。

ABSTRACT
The traveling wave tube is a device that can change the RF signal strength and frequency modification by input control signal. It is widely used in the list of electric application strategies as below: Doppler radar system, electronic counter-measurement system, guide missile system, the satellite communication system, television translating system, the low noise amplifier receiver, high band radar system, the wave source of dot matrix in phase, …and so on. The merit is it only needs the stable input power equipment with the guarantee to work fine. Again, because of the different operating frequency and output power in different working place, the current solutions can’t meet its need. The contribution of this thesis is the buck current-fed full bridge power converter because the better adapting. It is in designing and manufacture of the topology. It is approved by the quality and reliability.

目錄
中文摘要…………………………………………………………………і
英文摘要…………………………………………………………………ii
目錄………………………………………………………………...……iii
表目錄……………………………………………………...………...…vii
圖目錄…………………………………………………………………viii
第一章 緒論……..……………………………………………………....1
1.1 簡介………………………………………………………...…1
1.2 本文特點…………………………………………………..….2
第二章 行波管放大器高壓高頻電源供應器系統.………………….....4
2.1電源系統方塊描述………………………….……………..…4
2.1.1 EMI濾波器/功因校正電路或穩壓電路…………….…....5
2.1.2高壓高頻變壓器(High Voltage and High Frequency Transformer) ……………………………………………..5
2.1.3後穩壓的選擇…………………………………………..…6
2.1.4倍壓整流(Rectifier and Voltage Multiplier)……………....6
2.2行波管放大器架構…………………………………………...6
2.3行波管放大器簡介………………………………………......7
2.4燈絲加熱電源(Power Supply)介紹……………………….....9
2.5 Focus Electron(FE)電源介紹………….…………………….13
2.6本章結論………………………………………………….…14
第三章 高壓電源供應器分析……..………………………………….15
3.1功率轉換器基本原理……………………………………….15
3.2拓樸的選擇………………………………………………….20
3.2.1多級架搆與昇壓比的合理架構…………………………20
3.2.2倍壓整流電路……………………………………………21
3.2.3電壓源饋入轉換器………………………………………25
3.2.4考慮變壓器之等效電路…………………………………26
3.3降壓電流饋入型全橋轉換器的分析……………………….29
3.3.1主電路分析………………………………………………29
3.3.2時序分析…………………………………………………29
3.4本章結論…………………………………………………….33
第四章 變壓器設計……..…………………………………………….35
4.1 基本電磁關係……………………………………………....35
4.1.1磁動勢……………………………………………………36
4.1.2 磁場強度………………………………………………...36
4.1.3 磁滯迴線………………………………………………...37
4.1.4 安培定律………………………………………………...38
4.1.5 法拉第定律……………………………………………...39
4.2 高升壓比變壓器的設計考量……………………………….39
4.3 鐵芯材質的需求…………………………………………….41
4.4 高壓變壓器模型…………………………………………….41
4.5 高壓高頻變壓器之參數鑑定的工程方法………………….44
4.6本章結論……………………………………………………..46
第五章 設計實例………..…..…………………………………………48
5.1規格的需求…………………………………………………..48
5.2功率元件計算分析…………………………………………..48
5.3Buck 級MOSFET及Diode 選取…………………………...49
5.4Buck 級電感的計算…………………………………………49
5.5Full Bridge MOSFET的選取…………………………….…..49
5.6變壓器計算…………………………………………………..49
5.7二次測整流體計算……………………………………….….50
5.8閉迴路計算……………………………………………….….50
5.9增益波德圖…………………………………………………..54
5.10實測結果……………………………………………………54
5.11本章結論……………………………………………………58
第六章結論與建議……………………………………………………..60
參考文獻………………………………………………………………..62
表目錄
表3-1 各種倍壓整流電路的比較表 24
表4-1 電與磁的對等關係 35
圖目錄
圖2.1 電源系統方塊描述……………………………………….…….. 4
圖2.2 LBT型行波管放大器電源供應器系統方塊圖………………… 6
圖2.3 行波管放大器外觀圖………………………………………….…7
圖2.4 電子槍結構圖…………………………………………………….7
圖2.5 TWT增益與輸出功率的關係……………………………………8
圖2.6 TWT輸入/輸出功率與操作頻率的關係………………………...9
圖2.7 燈絲電源電路圖…………………………………………………9
圖2.8 燈絲電源等效電路……………………………………………..10
圖2.9 等效注入電流模型……………………………………………...11
圖2.10 Current-Fed Push-pull 一次測的V.I wave form……………....12
圖2.11 Focus Electron(FE)電路圖……………………………………..13
圖3.1電壓源饋入………………………………………………………15
圖3.2電流源饋入……………………………………………………....15
圖3.3電壓槽輸出………………………………………………………16
圖3.4電流槽輸出………………………………………………………16
圖3.5開關A …………………………………………………………..16
圖3.6開關B……………………………………………………………17
圖3.7直流與交流緩衝器………………………………………………17
圖3.8電壓源與一個開關串聯………………………………………...18
圖3.9兩組電源與兩個開關串聯……………………………………...18
圖3.10電壓源與電流源各自接上四只開關………………………….18
圖3.11開關與電槽連接A…………………………………………….19
圖3.12開關與電槽連接B ……………………………………………20
圖3.13多級升壓的合理分配圖……………………………………….20
圖3.14變壓器二次電容等效反射示意圖…………………………….21
圖3.15兩倍壓整流電路圖…………………………………………….21
圖3.16 CW Type倍壓整流…………………………………………….22
圖3.17 Symmetry CW Type倍壓整流…………………………………23
圖3.18 Inverse Type倍壓整流…………………………………………23
圖3.19 Symmetry Inverse Type 倍壓整流…………………………….23
圖3.20 Q=0.1時負載的輸出電壓與頻率的關係……………………..24
圖3.21 Q=1.0 時負載的輸出電壓與頻率的關係…………………….25
圖3.22電壓源與電壓槽加入電流型的緩衝器(單電源)…………….. 26
圖3.23兩電壓源與兩電壓槽加入交流緩衝器………………………..26
圖3.24傳統變壓器等效電路…………………………………………..27
圖3.25變壓器接上開關與電流槽……………………………………..27
圖3.26隔離型電流饋入電路…………………………………………..27
圖3.27隔離型電流饋入電路的等效電路…………………………….28
圖3.28 Buck Current-Fed Full Bridge Converter………………………28
圖3.29 Buck Current-Fed 主電路圖…………………………………...30
圖3.30 Buck Current-Fed Overlap 時序圖…………………………….31
圖3.31 Buck Current-Fed 加上snubber電路………………………….32
圖4.1磁滯曲線圖………………………………………………………36
圖4.2由N1N2兩組線圈所繞成的變壓器…………………………….38
圖4.3高頻變壓器模型…………………………………………………42
圖5.1使用電阻平衡二極體耐壓………………………………………50
圖5.2控制器方塊圖……………………………………………………51
圖5.3 LC二階網路…………………………………………………….51
圖5.4 二階網路增益圖………………………………………………..51
圖5.5 Type 3誤差放大器………………………………………………52
圖5.6 增益波德圖……………………………………………………..54
圖5.7 Vbuck 波形&Ibuck波形量測點…………………………………..54
圖5.8 Buck MOSFET 的VI 波形……………………………………55
圖5.9Vtransformer 波形&Itransformer波形量測點…………………………55
圖5.10 Transformer的VI波形………………………………………..55
圖5.11 輸出Cathode的電壓波形……………………………………..56
圖5.12 TA-5050空載時的功率消耗…………………………………..56
圖5.13 Heater on時的總功率消耗…………………………………….57
圖5.14 Heater on High Voltage on但 focus off時的總功率消耗……57
圖5.15 Focus on Transmit的總功率消耗……………………………..58

參考文獻
1. J.A.Sabate, V Vlatkovic, R.B. Ridley, and F.C.Lee Virginia Power Electronics Center, “High Voltage High power ZVS Full-Bridge PWM Converter Employing an Active Snubber”, CH2992-6/91/0000-0158 1991 IEEE p.158-163
2. Dongyan Zhou, Andzrej Pietkiewicz and Slobodan Cuk California Institute of Technology E.E. ASCOM Energy Systems “A Three Switch High Voltage Converter”, O-7803-2482-X/95 1995 IEEE p.283-289
3. H. Takano, J. Takahashashi (IEEE Members), and T. Hatakeyama M. Nakaoka (IEEE Member) “Feasible Characteristic Evaluations of Resonant Tank PWM Inverter-Linked High-Power Converters For Medical-Use High-Voltage Application”O-7803-2482-X/95 p.913-919
4. Satoshi OHTSU, Katsuhiko Yamamoto and Toshiyuki SUGIURA NTT Applied Electronics Laboratories “Stable Conditions in High-Voltage Output Push-Pull Current-fed Converters” CH2873-8/90/0000-0684 1990 IEEE p.684-689
5. J.Sun, X.Dring, M.Nakaoka and H.Takano “Series resonant ZCS-PFM DC-DC converter with multistage rectified voltage multiplier and dual mode PFM control scheme for medical use high voltage X-ray Power Generator ”IEE Proc.-Electr. Power Appl., Vol, 147, No. 6 November 2000 p.527-534
6. M. H. Kheraluwala D.W.Novotny D.M.Divan Department of Electrical & Computer Engineering University of Wisconsin-Madison “Design Considerations for High Power High Frequency Transformers”, CH2873-8/90/0000-0734 1990 IEEE p.734-742
7. M.A. Perez, C. Blanco, M. Rico, F.F. Linera Dpto. de Ingenieria Electrica Y. Electronica ETSIIeII Universidad de Oviedo Ctra. Castiello s/n Campus de Viesgues 33204-Gijon (Asturias), APAIN “A new Topology for High Voltage, High Frequency Transformers”, O-7803-2482-X/95 1995 IEEE pp.554-559
8. Abraham I., Pressman “Switching Power Supply Design”, President, Switch-tronix Power, Inc. Waban, Massachusetts p.291
9. David K. Abe, Member, IEEE, Mai T. Ngo, Baruch Levush, Senior Member, IEEE, Thomas M. Antonsen, Jr., Member, IEEE, and David P. Chernin “A Comparison of L-Band Helix TWT Experiments with CHRISTINE, a 1-D Multi-frequency Helix TWT Code” 0093-3813/00 2000 IEEE p.576-587
10. Wilson C. P. de Aragao Filho, Member IEEE, Ivo Barbi, Senior Member IEEE. “A Comparison Between Two Current-Fed Push-Pull DC-DC Converters Analysis, Design And Experimentation” O-7803-3507-4/96 1996 IEEE P.313-320
11. Grover V. Torrico Bascope, Ivo Barbi FEDERAL UNIVERSITY of SANTA CATARINA “Isolated Fly-back Current-Fed Push-Pull Converter for Power Factor Correction”, O-7803-3500-7/96 1996 IEEE pp.1184-1190
12. Gregory Ivensky, Michael Gulko, Sam Ben-Yaakov “Current-Fed Multi-Resonant DC-DC Converter”, O-7803-0982-0/93 19936 IEEE pp.58-64
13. A.P. Hu, Student Member IEEE J.T. Boys, Fellow, IPENZ G.A. Covic, Member IEEE The Electrical and Electronic Department University of Auckland New Zealand “Frequency Analysis and Computation of a Current-Fed Resonant Converter for ICPT Power Supplies” O-7803-6338-8/00 2000 IEEE p.327-332
14. Bruce W. Evans, L. L. Grigsby and R. M. Nelms “Modular State Variable Simulation of Transformer at High Frequency for Spacecraft Power System Applications”0094-2898/88/0000/0491 1988 IEEE p.491-495
15. Domingo A. Riiz-Caballero and Ivo Barbi Federal University of Santa Catarina Department of Electrical Engineering Power Electronics Institute “A NEW FLYBACK-CURRENT-FED PUSH-PULL DC-DC CONVERTER”O-7803-4503-7/98 1998 IEEE p.1036-1041
16. Faruk J. Mome and Ivo Barbi Department of Electrical Engineering Power Electronic Institute Federal University of Santa Catarina “A ZVS Clamping Mode-Current-Fed Push-Pull DC-DC converter” O-7803-4756-0/98 1998 IEEE p.617-621
17. Malik E. Elbuluk IEEE Member Miguel E. Chavez IEEE Student Member Electrical and Computer Engineering Department “A Complete Normalized Analogy of the Current-Fed Series Resonant DC-DC Converter ”CH 2795-3/89/0000-0027 1989 IEEE p.27-32
18. Peter Mantovanelli and Ivo Barbi, Senior Member, IEEE Federal University of Santa Catarina-Dep. of Electrical Engineering “A New Current-Fed Isolated PWM DC-DC Converter”O-7803-2482-X/95 1995 IEEE p.290-296
19. C. F. Chang K.L. Hsu Y.S. Lee Department of Electrical Engineering, Fu Jen Catholic University “Engineering Approach to Evaluate the Parameters of a High Voltage High Frequency Transformer Applied to CO2 Laser Tube Driver” 13-16 The 21st Symposium on Electrical Power Engineering p.795-799

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top