(3.236.118.225) 您好!臺灣時間:2021/05/16 10:53
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:洪宛頻
研究生(外文):Wan-Ping Hung
論文名稱:具模糊限制式之線性規劃問題
論文名稱(外文):Linear Programming Problem with Fuzzy Constraints
指導教授:胡承方胡承方引用關係
指導教授(外文):Cheng-Feng Hu
學位類別:碩士
校院名稱:義守大學
系所名稱:工業管理學系
學門:商業及管理學門
學類:其他商業及管理學類
論文種類:學術論文
論文出版年:2001
畢業學年度:89
語文別:中文
論文頁數:28
中文關鍵詞:模糊線性規劃模糊排序法半無限規劃割平面法
外文關鍵詞:Fuzzy linear programmingFuzzy rankingSemi-infinite programmingCutting plane method
相關次數:
  • 被引用被引用:1
  • 點閱點閱:489
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
在過去的幾年裡,模糊線性規劃領域的研究發展迅速。相對於傳統線性規劃問題,模糊線性規劃問題的數學模式不是唯一。根據實際情況的假設與問題的特性,模糊線性規劃問題的數學模式可以有許多不同的變化,而文獻中也已有許多求解的方法被提出,用以處理不同數學模式的模糊線性規劃問題;近年來Delgado, Verdegay與Vila提出所謂「模糊線性規劃問題的一般式」,在這個「一般式」中,限制式同時具有模糊係數與模糊不等式。本研究將針對此模糊規劃問題一般式之解題方法進行探討。在本研究中我們將利用α-level set的概念、目標規劃方法以及模糊排序法,將所探討的問題轉換成傳統半無限規劃問題,並提出割平面演算法以解決此半無限規劃問題。此外,文中並以數值範例來說明本研究所提出之解題程序的有效性。

Over the past years the field of fuzzy linear programming has experienced a great deal of growth. In contrast to classical linear programming problems, fuzzy linear programming problems do not have one unique model. Many variations are possible depending on the assumptions or features of the real situation to be modeled. Various models and approaches have been devised in the literature to deal with the diversity in fuzzy linear programming problems. Recently, Delgado, Verdegay and Vila studied a “general model” for fuzzy linear programming problem which involves fuzziness both in the coefficients and in the accomplishment of the constraints. This work aims to investigate solution method for the “general model” for fuzzy program. It shows that such problems can be converted to semi-infinite programming problems by employing the concepts of α-level set, the technique of goal programming and fuzzy ranking. A cutting plane algorithm is proposed for solving the resulting problem. A numerical example is included to illustrate the solution procedure.

第一章 緒論………………………………………………………………1
第一節 研究動機與背景……………………………………………1
第二節 研究目的……………………………………………………2
第三節 研究流程……………………………………………………3
第二章 相關文獻回顧……………………………………………………4
第一節 具有模糊不等式之線性規劃問題…………………………4
第二節 具有模糊係數之線性規劃問題……………………………6
第三章 研究方法與步驟…………………………………………………9
第一節 處理模糊不等式……………………………………………9
第二節 處理限制式中之模糊係數…………………………………11
第三節 小結…………………………………………………………16
第四章 數值範例…………………………………………………………17
第五章 結論與建議………………………………………………………26
第一節 研究結論……………………………………………………26
第二節 後續研究建議………………………………………………26
參考文獻…………………………………………………………………27

[1] A. Charnes and W.W. Cooper, Management Models and Industrial Applications of Linear Programming, John Wiley, New York, 1961.
[2] B. Werners, An interactive fuzzy programming system, Fuzzy Sets and Systems, Vol. 23, pp. 131-147, 1987.
[3] D. Dubois and H. Prade, System of linear fuzzy constraints, Fuzzy Sets and Systems, Vol. 3, pp. 37-48, 1980.
[4] E.L. Hannan, Linear programming with multiple fuzzy goals, Fuzzy Sets and Systems, Vol. 6, pp. 235-248, 1981.
[5] H.J. Zimmermann, Fuzzy Set Theory and Its Applications, Kluwer Academic, MA., 1991.
[6] H.J. Zimmermann, Description and optimization of fuzzy system, Internation Journal of General System, Vol. 2, pp. 209-215, 1976.
[7] H. Tanaka and K. Asai, Fuzzy linear programming problems with fuzzy numbers, Fuzzy Sets and Systems, Vol. 13, pp. 1-10, 1984.
[8] H. Tanaka, H. Ichihashi and K. Asai, A formulation of fuzzy linear programming problems based on comparison of fuzzy numbers, Control and Cybernet, Vol. 13, pp. 185-194, 1984.
[9] J. Ramik and J. Rimanek, Inequality relation between fuzzy numbers and its use in fuzzy optimization, Fuzzy Sets and Systems, Vol. 16, pp. 123-138, 1985.
[10] J.L. Vedegay, Fuzzy Mathematical Programming, North-Holland, Amsterdam, Holland, 1982.
[11] J.M. Adamo, Fuzzy decision trees, Fuzzy Sets and Systems, Vol. 4, pp. 207-219, 1980.
[12] J.J. Buckley, A fast method of ranking alternatives using fuzzy numbers, Fuzzy Sets and Systems, Vol. 30, pp. 337-338, 1989.
[13] K. Glashoff and S.A. Gustafson, Linear Optimization and Approximation, Springer Verlag, New York, 1983.
[14] M. Delgado, J.L. Verdegay and M.A. Vila, A general model for fuzzy linear programming, Fuzzy Sets and Systems, Vol. 29, pp. 21-29, 1989.
[15] R.L. Rardin, Optimization in Operations Research, Prentice-Hall, NJ, 1998.
[16] R. Hettich and K.O. Kortanek, Semi-infinite programming: theory, method, and applications, Siam Review, Vol. 35, No. 3, pp. 380-429, 1993.
[17] S.Y. Wu, S.C. Fang and C.J. Lin, Relaxed cutting plane method for solving linear semi-infinite programming problems, Journal of Optimization Theory and Applications, Vol. 99, No. 3, pp. 759-779, 1998.
[18] S. Chanas, The use of parametric programming in FLP, Fuzzy Sets and Systems, Vol. 11, pp. 243-251, 1983.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top