跳到主要內容

臺灣博碩士論文加值系統

(44.222.104.206) 您好!臺灣時間:2024/05/23 18:24
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:張乃先
研究生(外文):Nai-Hsien Chang
論文名稱:電鍍參數對鎳鍍層特性之影響研究
論文名稱(外文):Influences of Plating Parameters on the Properties of Deposited Ni Film
指導教授:許志雄許志雄引用關係
指導教授(外文):Chi-Shiung Hsi
學位類別:碩士
校院名稱:義守大學
系所名稱:材料科學與工程學系
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2001
畢業學年度:89
語文別:中文
論文頁數:74
中文關鍵詞:脈衝電鍍二層鍍鎳表面粗糙度硬度
外文關鍵詞:Pulse platingTwo layers nickel depositionSurface roughnessHardness
相關次數:
  • 被引用被引用:5
  • 點閱點閱:4426
  • 評分評分:
  • 下載下載:299
  • 收藏至我的研究室書目清單書目收藏:1
本研究是利用直流電和脈衝電鍍的方式於銅底材上電鍍鎳,找出製程參數、鍍層性質和封裝測試結果的關聯性。再採用二種組合的參數,先後鍍上二層鎳層,測量其鍍層性質並做封裝測試,以瞭解二層鎳之鍍層性質的改變對封裝測試的影響。
實驗的變數包括,直流電電鍍的表面電流密度(0.5∼15.0 A/dm2)、脈衝電鍍的間歇脈衝比(1∼5)及脈衝頻率(1.67 ~100 Hz)等,來探討參數的改變,對鍍層性質的影響,並且藉由封裝測試的結果找出最佳的鍍層性質。
研究結果發現,在相同的鍍浴條件下,隨著表面電流密度、間歇脈衝比的增加及脈衝頻率的降低,造成鍍層平均晶粒尺寸變小。鍍層平均晶粒尺寸變小相對影響殘留應力、硬度、光澤度的增加及表面粗糙度和孔隙度的降低。
在封裝測試的結果中,在較高表面粗糙度和低孔隙度時擁有最佳的拉力值和表面濕潤性;若鍍層具有較低的內應力和硬度,在彎腳測試中可得到最佳之鍍層拉伸結果。二層鎳封裝測試中由低孔隙度和高硬度的內層鎳,及高表面粗糙度和低硬度的二層鎳組合之鍍層可得到最佳的封裝測試結果。
Nickel metal films were plated onto copper substrates by DC and pulse currents. The relationships between process parameters and properties of deposited films were investigated in this study. Two layers Ni depositions were fabricated by the results obtained from single layer deposition, and assembly tests were used to evaluate two layers deposition.
The process conditions used in this research were surface current density 0.5~15.0 A/dm2 in DC plating, pause to pulse ratio 1~5 and pulse frequency 1.67~100Hz in pulse plating. Grain size, residual stress, surface roughness, and hardness of the deposited films were characterized and used to study the influence of each parameter on the property of Ni film. A better process condition was achieved after assembly test.
Under the same Watt’s bath, increasing the surface current density, pause to pulse ratio, and decrease the pulse frequency, the average grain size of layers decreased. Decreasing the average grain size of deposited films made the intrinsic stress, hardness and brightness increased, and made the surface roughness and porosity decreased.
The results of assembly tests revealed that rougher surface morphology and lower porosity performed better results in wire pull, surface wettability and bending tests. Lower porosity, harder inner layer, and rougher and softer two layers presented the best results of assembly tests.
中文摘要Ⅰ
英文摘要II
誌 謝III
總 目 錄IV
圖 目 錄VII
表 目 錄Ⅹ
第一章 緒論01
1-1 前言01
1-2 研究背景與動機03
1-3 研究目的與內容04
第二章 理論基礎及文獻回顧06
2-1 法拉第電解定律06
2-2 脈衝電鍍07
2-3 電流效應08
2-4 電極電位08
2-5 過電壓09
2-6 不可逆電極10
2-7 Tafel Equation10
2-8 電雙層11
2-9 質量傳送13
2-10 金屬沉積的成長14
2-11 薄膜應力16
2-12 裂痕19
2-13 薄膜硬度20
2-14 表面粗糙度21
2-15 孔隙度22
2-16 銲線性23
2-17 表面濕潤性24
第三章 實驗方法與步驟27
3-1 電鍍實驗槽系統的構成27
3-2 樣品製備30
3-3 電鍍參數30
3-4 鍍層機械性質的測量32
3-4-1 殘留應力32
3-4-2 表面粗糙度32
3-4-3 硬度32
3-4-4 孔隙度33
3-4-5 光澤度33
3-4-6 顯微結構33
3-5 封裝測試34
3-5-1 銲線性34
3-5-2 鍍層濕潤性35
3-5-3 鍍層伸長率35
第四章 結果與討論40
4-1 鍍層表面結構40
4-2 平均晶粒尺寸44
4-3 內應力48
4-4 硬度52
4-5 粗糙度54
4-6 孔隙度58
4-7 二層鍍鎳60
4-8 封裝測試61
第五章 結論63
第六章 參考資料65
附錄一 A-1
A-1 拉力值A-1
A-2 表面濕潤性A-5
A-3 彎腳測試A-7
A-4 二層鍍鎳的封裝測試A-9
1. R. Schetty , “An Environmentally Friendly Method for Plating Semiconductor Components: Palladium Lead Frame Plating” , LeaRonal Inc., Freeport, NY.
2. C. Fan, A. Blair, L. Mayer and J. A. Abys , “New Technical and Economical Developments in Nickel/Palladium Leadframe Surface Finishing” , Lucent Technologies, Electroplating Chemicals & Services 236 Richmond Valley Road, Staten Island, NY 10309.
3. “European Patent Application 87305080.1”, Texas Instruments, 1987.
4. “European Patent Application 89302939.7”, Texas Instruments, 1989.
5. Shinko Denki Kogyo, “Japan Patent H2-234833” , 1990.
6. 志賀章二 , 松田晃 , “公開特許公報 昭59-168659” , 古河電氣工業株式會社, 1984.
7. Integrated Circuit Package, IEEE Transactions on Components, Hrbrids, and Manufacturing Technology, 1991.
8. A. Murata and D. Abbott. “Semicon Japan Technical Proceedings”, 1990.
9. M. Kurihara , M. Mori , T. Uno , T. Tani and T. Morikawa , SEMI Packaging Seminar Taiwan , 1997.
10. D. Romm, “Palladium Lead Finish User’s Manual”, 1994.
11. M. Witt, “The Trek Toward Lead-Free Solders”, Surface Mount Technology, 1996.
12. C. Bastecki , “Lead-Free Assembly ofb Mixed Technology PCBs” , Surface Mount Technology , 1997.
13. A. Gickler , C. Willi and M. Loomans , “Contamination of Lead-Free Solders” , Surface Mount Technology , 1997.
14. Akira CHINDA , Hisanori AKINO and Takuya YONEKAWA , “Influence of Nickel Plating Underlayer Deposition Conditions on Bending Characteristics of Palladium Plating Leadframe” , 表面技術, Vol. 49, No 12. pp1283-1290, 1998.
15. “JEDEC Standard: Descriptive Designation System for Semiconductor-Device Package” , Electronic Industries Association , JESD30-B, April 1995.
16. 平田勝則 , “鍍鈀封裝的發展方向” , 電子材料, pp53-58, April 1998.
17. Rob Schetty , Shipley Ronal , “Pb-Free Component Finishes” , Technic, Inc.,
18. 西村哲郎 , “關於Lead-free Solder 之現況” , 今後之封裝材料.
19. 莊達人 , VLSI 製造技術, 高立圖書有限公司 , 87年10月4日四版.
20. George G. Harman, Wire Bonding in Microelectronics, McGraw-Hill Edition, 2nd Edition, 1989.
21. V. A. Zabludovsky , E.Ph. Shtapenko , V. S. Gribok, R. Ph. Ganitsh, A.N. Gulivets and M.V. Gadgilov , “The Application of Program-Controlled Pulsed Current for Obtaining Metallic Coatings with Specific Properties” , Trans IMF, 78(3), 110,pp110-112, 2000.
22. T. P. sun , C. C. Wan and Y. M. Shy , “Plating with Pulsed and Periodic-Reverse Current” , Met. Finish, vol. 77, no.33, pp33-38, 1979.
23. P. T. Tang , T. Watanabe , J. E. T. Andersen , G. Bech-Nielsen , “Improved Corrosion Resistance of Pulse Plated Nickel Through Crystallisation Control” , Journal of Applied Electrochemistry 25, pp347-352, 1995.
24. K. I. Popov , M. D. Maksimovic and B. M. Ocokoljic and B. J. Lazarevic , “Fundamental Aspects of Pulsating Current Metal Electrodeposition, I:The Effect of The Pulsating Current on The Surface Roughness and The Porosity of Metal Deposits”, Surface Technology, 11(99), 1980.
25. S. Benhenda , N. Ben Jemaa Associate Member, IEEE, and M. Bourir , “Effect of Pulse Plating Parameters on Electrical Contact Behavior of Nickel Coatings” , IEEE Transactions on Components, Packaging, and Manufacturing Technology-Part A, Vol. 17, No. 2, pp303-308, June 1994.
26. Peter T. Tang, M. Sc., Dr. Peter Leisner and Dr. Per Moller , “Improvement of Nickel Deposit Characteristics by Pulse Plating” , Dynatronix.
27. J. C. Puippe , Frank Leaman , Theory and Practice of Pulse Plating, American Electroplaters and Surface Finishers Society Edition, Jan. 1987.
28. Dr. C. A. Dullaghan and J.A. Abys , “PdNi Ductility-A Designed Experiment” , Lucent Technologies, Electroplating Chemicals & Services , Staten Island, NY 10309.
29. P. H. Margulies and W. J. Tillis , U.S. Patent 3, 129, 153, 1964.
30. Chuck Van Horn, “Pulse Plating”, Dynatronix.
31. 郁仁貽 , 實用理論電化學, 徐氏基金會 , 85年1月15日初版.
32. Frederick A. Lowenheim, “Modern Electroplating”, The Electrochemical Society Inc. 3rd Edition, 1942.
33. 蘇癸陽 , 實用電鍍理論與實際, 復文書局 , 88年八版.
34. B. E. Conway and O’M. Bockris, Electrochem , Acta , 3, 340 , 1961.
35. E. H. Lyons, Jr., J. Electrochem. Soc., 101, 363, 1954.
36. Donald L. Smith, “Thin-Film Deposition: Principles Practice”, McGraw-Hill, Inc., 1995.
37. Robert E. Reed-Hill, Reza Abbaschian, Physical Metallurgy Princioles, An International Thomson Publishing Company, 3rd Edition, 1996.
38. Mordechay Schlesinger, Milan Paunovic, Modern Electroplating, John Wiley & Sons, Inc. 4th Edition, 2000.
39. James F. Shackelford, Introduction to Materials Science for Engineers, Macmillan Publishing Company, 2nd Edition, 1990.
40. Douglas W. Romm , “Palladium Lead Finish User’s Manual” , Texas Instruments.
41. F. Donald Bloss , Crystallography and Crystal Chemistry, Virginia Polytechnic Institute and State University, 1971.
42. George F. Vander Voort , Matallography: Principles and Practice, McGraw-Hill, Inc., 1984.
43. A. C. Tan, Tin and Solder Plating In the Semiconductor Industry, Chapman & Hall Edition, 1993.
44. Chonglun Fan, J. P. Celis and J. R. Roos , “Relation Between Plating Overpotential and Porosity of Thin Nickel Electrolytic Coatings” , Electrochem. Soc., Vol. 138, No. 10, pp2917-2920, October 1991.
45. Peter Glutz , “SPT Small Precision Tools: Bonding Capillaries” , SPT Roth Group.
46. Dr. Joseph A. Abys , “Solderability & Wirebonding Performance of Nickel/Palladium-Plated Leadframes” Plating & Surface Finishing, pp114~115, May 2001.
47. Zonghe Lai , Johan Liu , “Wire Bonding: Conclusions and Guideline” , The Nordic Electronics Packaging Guideline.
48. Dieter Wolf, Sidney Yip, Materials Interfaces, Chapman & Hall, 1992.
49. “Olin C7025 High Performance Alloys”, Olin Corporation, 2000.
50. B.D. Cullity , Addison Wesley , Elecments of X-Ray Diffraction, 2nd Edition.
51. Standard Test Method for Porosity in Gold and Palladium Coatings by Sulfurous Acid/Sulfur-Dioxide Vapor”, ASTM B 799.
52. “Guidelines for Nondestructive Pull Test of Wire Bonds on Hybrid Devices” , JEDEC Publication No. 96, May 3,1982.
53. “Solderability Tests for Component Leads, Terminations, Lugs, Terminals and Wires” , ANSI/J-STD-002.
54. “Solderability testing of Electronic components for Surface Mount Technology by The Wetting Balance Method”, IEC 68-2-69.
55. “Standard practice for Bend Test for Ductility of Electrodeposited and Autocatalytically Deposited Metal Coatings on Metals” , ASTM B 489.
56. Dr. Joseph A. Abys, “The Effect of Base Metal Impurities on The Solderability & Wirebonding of Semiconductor Leadframes”, Plating & Surface Finishing, pp54~55, January 2000.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top