(3.236.122.9) 您好!臺灣時間:2021/05/14 05:33
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:徐崧富
研究生(外文):Sung-Fu Hsu
論文名稱:對位聚苯乙烯奈米複合材料的結晶型態研究
論文名稱(外文):Crystal Structure and Morphology of Syndiotactic Polystyrene Nanocomposites.
指導教授:吳宗明吳宗明引用關係
指導教授(外文):Tzong-Ming Wu
學位類別:碩士
校院名稱:義守大學
系所名稱:材料科學與工程學系
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2001
畢業學年度:89
語文別:中文
論文頁數:80
中文關鍵詞:對位聚苯乙烯奈米複合材料
外文關鍵詞:syndiotactic polystyrenenanocomposites
相關次數:
  • 被引用被引用:3
  • 點閱點閱:530
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
對位聚苯乙烯(syndiotactic polystyrene, sPS)為一結晶性高分子材料,其晶型態相當複雜,隨著結晶環境的不同而有α、β、γ及δ四種不同的結晶形態產生,其中α-form和β-form的分子鏈之排列為平面鋸齒狀結構,一般於熔融結晶時形成,結晶型態的不同主要是與其所受的熱歷史有關,在不同的熱處理條件下其α-form和β-form所佔比列也會跟著改變。而γ-form及δ-form的分子鏈排列為立體螺旋結構,此兩種結晶型態僅在溶劑誘導下才會出現產生。
高分子奈米複合材料,係指分散相之粒徑在奈米尺度均勻混合於高分子連續相中所形成的新材料,可充分發揮分子層級之結構特性,如粒徑小、高長寬比、層狀結構、離子鍵結等特性,兼具高強度、高剛性、高耐熱性等高功能性質,在材料的開發應用上極具潛力。本論文主要在利用界面改質與表面處理的技術,將奈米級尺度蒙脫土均勻分散於對位聚苯乙烯基材中,製備成對位聚苯乙烯/蒙脫土之奈米複合材料。藉由X光繞射結果得知蒙脫土經表面改質後其層間距離被撐開至3.81 nm,以穿透式電子顯微鏡觀察,蒙脫土在對位聚苯乙烯基材中以成束狀均勻分散。將此奈米複合材料,經由不同結晶條件(如熔融溫度、結晶溫度、降溫速率…)處理後,製成sPS/MMT薄膜,利用分析XRD之圖譜鑑定其結晶結構,再配合偏光顯微鏡觀察其晶體結構之變化。由熔融結晶行為與等溫結晶實驗結果可知,高分子量的對位聚苯乙烯(HM-sPS)比低分子量(LM-sPS)具較大的α-β相轉換(phase transformation)溫度區間,介於265∼290℃,且其單一α-form存在最高之熔融溫度(即轉換起始溫度, Ti)與單一β-form存在最低之熔融溫度(即轉換終止溫度, Tf)皆較高溫,而LM-sPS之Ti與Tf較低,相轉換的溫度區間範圍較小介於263∼278℃,即LM-sPS的相轉換情形對溫度的敏感度較高,變化較明顯。而將LM-sPS加入奈米尺度蒙脫土(MMT)後會造成連續相的高分子其結晶行為與結晶型態發生改變,且改變情形在低含量時影響最大。0.5 wt%之sPS/MMT奈米複合材料其Ti較LM-sPS提高2℃,Tf也增加了12℃,α-β相轉換溫度區間範圍共增加了10℃。但隨著MMT含量的增加其Ti與Tf逐漸降低,且相轉換溫度區間也會變小。

Abstract
Syndiotactic polystyrene (sPS) has received considerable attention due to its high melting temperature, fast crystallization rate, low dielectric constant and permeability to gases and excellent chemical resistance. Structural studies by XRD, FTIR and NMR have revealed a complex polymorphic behavior. The various crystalline structures, namely α, β, γ, δ, differ with respect to the chain conformation as well as for the chain packing within unit cell. The α and β forms, containing trans planar zigzag chains, can be obtained from the melt or the glassy state of sPS under different thermal conditions, while the γ and δ forms are formed under conditions where the solvent induced.
Polymer nanocomposites defined by the particle size of the dispersed phase containing at least one dimension less than 100 nm have relatively high aspect ratio and increase much interest due to their excellent physical, mechanical and thermal behavior over their conventional microcomposites. The preparation of synthetic nanocomposites is the intercalation of monomers or polymers into swellable layer silicate hosts. In this thesis, we have used montmorillonite as the dispersed phase to prepare sPS/clay nanocomposites. Both x-ray diffraction data and transmission electron microscopy of sPS/clay nanocomposites show the layered montmorillonite are intercalated with sPS at least in the scale of 3.81nm. X-ray data also indicates the presence of polymorphism in sPS/clay nanocomposites. This polymorphic behavior is dependent on the thermal history of sPS/clay nanocomposites from the melt and on the content of clay in sPS/clay nanocomposites. The quenching from the melt induces the crystallization into the α crystalline form for pure sPS as well as sPS/MMT nanocomposites. The effect of crystallization temperature, melting temperature and cooling condition on the temperature range of α-β crystalline transformation is also discussed.

中文摘要………………………………………………………………………….Ⅰ
英文摘要………………………………………………………………………….Ⅲ
致謝……………………………………………………………………………….Ⅳ
總 目 錄………………………………………………………………………….Ⅴ
圖 目 錄………………………………………………………………………….Ⅶ
表 目 錄………………………………………………………………………....XI
第一章 緒論1
1-1.前言1
1-2研究動機與目的7
1-3研究方向7
第二章 文獻回顧與理論基礎9
2-1對位聚苯乙烯之多晶結構探討9
2-2對位聚苯乙烯之結晶控制條件10
2-3對位聚苯乙烯之熔融結晶鑑定11
2-4對位聚苯乙烯之球晶成長機構12
2-5 對位聚苯乙烯結晶型態之轉換13
2-6蒙脫土之表面改質15
2-7表面聚合16
2-8聚苯乙烯/蒙脫土之熔融摻和19
第三章 實驗方法與步驟22
3-1、實驗材料22
3-2樣品製備與實驗方法23
第四章 結果與討論29
4-1 sPS奈米複合材料之製備與測定29
4-1.1蒙脫土經改質後層間距離之改變29
4-1.2 sPS奈米複合材料蒙脫土的分佈情形30
4-2 sPS奈米複合材料之耐熱性質分析31
4-3 sPS奈米複合材料之結晶型態轉換36
4-3.1熔融結晶之結晶行為36
4-3.2等溫結晶之結晶行為38
4-3.3 sPS之結晶時間的影響44
4-3.4 熔融結晶之結晶轉換行為48
4-3.5 等溫結晶之結晶轉換行為54
第五章 結 論75
參 考 文 獻77

1. L. Abbondanza et al., ”Molding of Syndiotactic Polystyrene Under Its Melting Temperature,” Journal of Applied Polymer Science, v 80, pp377-383, 2001.
2. A.M. Evans et al., “The Structure and Morphology of Syndiotactic Polystyrene Injection Molded Coupons,” Polymer Engineering and Science, v37, no. 1,pp153-165, 1997.
3. W. Bu et al., ”An Interpretation of the Formation of α- and β-Form Crystals in Bulk Syndiotactic Polystyrene,” Macromolecules, 32, pp7224-7225, 1999.
4. Z. Sun et al., ”Crystallization of Syndiotactic Polystyrene Under Ppressure,” Polymer, v33, no.3, pp660-661, 1992.
5. C. Manfredi et al., “ Vapor Sorption in Emptied Clathrate Samples of Syndiotactic Polystyrene,” Journal of Polymer Science: Part B: Polymer Physics, v35, pp133-140, 1997.
6. F. D. Candia et al., ”Annealing of the Delta Form of Syndiotactic Polystyrene,” J. Macromal. Sci.-Phy., b34(1ž), pp95-103, 1995.
7. F. D. Candia et al., ”Phase Organization of Solvent-Crystallized Syndiotactic Polystyrene Films,” J. Macromal.Sci.-Phy., b33(3ƀ), pp347-356, 1995.
8. F. C. Chiu et al., ”Non-isothermal Crystallization and Multiple Melting Behavior of Syndiotactic Polystyrene─Pre-melting Temperature Effects,” Polymer Engineering and Science, v40, no.11, pp2397-2406, 2000.
9. Y. S. Sun et al., “Relationships between Polymorphic Crystals and Multiple Melting Peak in Crystalline Syndiotactic Polystyrene,” Macromolecules, v32, no.23, pp7836-7844, 1999.
10. Y. S. Sun et al., “Morphology and Crystal structure of Cold-crystallized Syndiotactic Polystyrene,” Polymer, 42, pp2241-2245, 2001.
11. G. Guerra et al., ”Polymorphism in Melt Crystallized Syndiotactic Polystyrene Samples,” Macromolecules, 23, pp1539-1544, 1990.
12. H. D. Wu et al., “Novel Determination of the Crystallinity of Syndiotactic polystyrene using FTIR Spectrum,” Polymer, 42, pp4719-4725, 2001.
13. C. D. Rosa et al, “On the Crystal Structure of the Orthorhombic Form of Syndiotactic Polystyrene,” Polymer, v33, no.7, pp1423-1428, 1992.
14. R. H. Lin et al., ”Melting Behavior and Identification of Polymorphic Crystals in Syndiotactic Polystyrene,” Polymer, 41,121-131, 2000.
15. C. D. Rosa et al., “Crystal Structure of the α-Form of Syndiotactic Polystyrene,” Polymer Journal, v23, no.12, pp1435-1442, 1991.
16. B. K. Hong et al., ”Correlation between Melting Behaviour and Polymorphism of Syndiotactic Polystyrene and Its Blend with Poly(2,6-dimethyl-1,4-phenylene oxide) ,” Polymer, v39, no.10, pp1793-1797, 1998.
17. S. M. Hong et al., “Crystalline Morphology and Melting Behavior of 100% Syndiotactic Polystyrene and 70/30 Blend of Syndiotactic Polystyrene and Poly(2, 6-dimethy-1, 4-phenylenoxide),” Polymer Journal, v32, no.3, pp187-191, 2000.
18. E. M. Woo et al., “Polymorphic Crystal Forms and Morphology of Syndiotactic Polystyrene in Miscible States,” Journal of Polymer Science: Part B: Polymer Physics, v36, pp2725-2735, 1998.
19. J. Y. Park et al., “Nonisothermal Crystallization Behavior of sPS/aPS Blends,” Journal of Polymer Science: Part B: Polymer Physics, v38, pp3001-3008, 2000.
20. E. M. Woo et al., “Interactions between Polystyrenes of Different Tacticities and Thermal Evidence for Miscibility,” Polymer, v41, pp883-890, 2000.
21. E. M. Woo et al., “On the Multing Behavior of Polymorphic Syndiotactic Polystyrene and Its Behavior in a Miscible State,” Macromol. Chem. Phys., 199, pp2041-2049, 1998.
22. S. Cimmino et al., ”Syndiotactic Polystyrene: Crystallization and Melting Behavior,” Polymer, v32, no.6, pp1080-1083, 1991.
23. Y. S. Sun et al., “Mechanisms of Reorganization of Lamellae in Syndiotactic Polystyrene,” Journal of Polymer Science: Part B: Polymer Physics, v38, pp3210-3221, 2000.
24. A. Keller et al., “The Role of Metastability in Polymer Phase Transitions,” Polymer, v39, no.19, pp4461-4487, 1998.
25. 林建邦, ”對位聚苯乙烯多經結構之界穩定性探討,” 碩士論文, 國立中興大學化學工程研究所, 台中, 2000.
26. A. Blumstein, “Polyerization of Adsorbed Monolayers. I. Preparation of the Clay-Polymer Complex,” Journal of Polymer Science: Part A, v3, pp2653-2664, 1965.
27. D. C. Lee et al., “Preparation and Characterization of PMMA-Clay Hybrid Composite by Emulsion Polymerization,” Journal of Applied Polymer Science, v61, p1117-1122, 1996.
28. 詹益池等人, ”熔融摻合法製備聚苯乙烯/黏土奈米複合材料,” 2000年海峽兩岸高分子學術研討會, 高雄市, pp631-632, 2000年1月22日∼23日.
29. J. H. Harwell et al.,”Pseudophase Separation Model for Surfactant Adsorption: Isomerically Pure Surfactants,” Langmuir, 1,pp251-262, 1985.
30. C. C. Nunn et al., “Visual Evidence Regarding the Nature of Hemimicelles through Surface Solubilization of Pinacyanol Chloride,” J. Phys. Chem., 86, pp3271, 1982.
31. J. Wu et al., “Two-Dimensional Reaction Solvent: Surfactant Bilayers in the Formation of Ultrathin Films,” Langmuir, 3, pp531-537, 1987.
32. J. Wu et al.”Two-Dimensional Solvents: Kinetics of Styrene Polymerization in Admicelles at or near Saturation,” J. of Phys. Chem., 91, pp623-634, 1987.
33. J. Forcada et al., “Moleling of Unseeded Emulsion Copolymerzation of Styrene and Methyl Methacrylate,” Journal of Polymer Science: Part A: Polymer Chemistry, v28, pp987-1009, 1990.
34. J. Forcada et al., “Emulsion Copolymerization of Styrene and Methyl Methacrylate. Ⅱ. Molecular Weights,” Journal of Polymer Science: Part A: Polymer Chemistry, v29, pp1231-1242, 1991.
35. X. Fu et al. ”Syndiotactic of Ploystyrene-Clay Nanocomposites,” Materials Letters, 42, pp12-15, 2000.
36. 簡正豐等人,”聚苯乙烯/蒙脫土界面改質對物性影響,” 2001年高分子研討會, 台北市, pp644-645, 2001年1月5日∼6日.
37. 簡正豐, ”聚苯乙烯/蒙脫土界面改質對物性影響,” 碩士論文, 國立中興大學化學工程研究所, 台中, 2000.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔