(35.175.212.130) 您好!臺灣時間:2021/05/17 21:38
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:吳秀真
研究生(外文):Hsiu-Chen Wu
論文名稱:鈦酸鋇厚膜電容介電特性之研究
論文名稱(外文):Dielectric Properties of Barium Titanate Based Thick-Film
指導教授:陳立軒陳立軒引用關係林文寬林文寬引用關係
指導教授(外文):Lih-Shan ChenW.K.Lin
學位類別:碩士
校院名稱:義守大學
系所名稱:電子工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2001
畢業學年度:89
語文別:中文
論文頁數:45
中文關鍵詞:鈦酸鋇氟化鋰厚膜電容
外文關鍵詞:barium titanateLiFthick filmcapacitor
相關次數:
  • 被引用被引用:2
  • 點閱點閱:1402
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
被動元件的開發趨勢為小尺寸及可於低溫燒製以降低生產成本。厚膜生產技術可應用於小型零組件的開發,例如功率放大器模組、壓控振盪器模組、濾波器、電阻、電容等被動元件上。網版印刷( screen printing )技術的使用可使被動元件直接印在基板表面,並燒製而成,亦可運用於多層陶瓷結構上,藉以縮小元件使用的空間並提高元件密度。
本研究主要探討在氧化鋁基板( Al2O3 )中,經由網版印刷技術製作低溫燒結厚膜電容器的可行性,包含自行製作可供網版印刷之低溫介電材料膏體,及其電性的探討。介電材料以鈦酸鋇( BaTiO3 )作為主成分,為使符合低溫燒結的要求( <1000℃ )、並與上下電極、基板共同燒結緻密,則必須藉由其它添加物,來降低鈦酸鋇原本高於1350℃之燒結溫度。因此在介電材料裡添加氟化鋰( LiF ),藉由氟化鋰的添加使鈦酸鋇於低溫時產生液相來加速燒結緻密程度。實驗結果發現,在非計量組成 ( Ba / Ti = 1.025 )鈦酸鋇中添加10wt% LiF能使其燒結溫度降至900℃,介電損失小於5%。氟化鋰會與鈦酸鋇形成固熔體,燒結後仍具鈣鈦礦結構,介電常數為2024,-30℃∼130℃間電容變化率特性近似於EIA Y7T類。非計量組成鈦酸鋇( 亦即Ba1.025TiO3 )添加10wt% LiF的組成,網版印刷在氧化鋁基板上,於溫度950℃持溫30min燒結條件下製成的厚膜電容,介電常數約為1977,損耗因子為2.638%。
The development of passive elements are devoted to smaller size and enable to be sintered at low temperature to reduce the production cost. Thick film technology can be applied to develop smaller size components. Passive elements such as power ampilifer, voltage control oscillator, filter, resistor and capacitor can be fabricated by the thick film technology. The passive components were fabricated by the pastes printed on the alumina substrate and then were fired. The major advantage of the thick film technology is the reduced cost and higher component area density.
In this study, the capacitors were fabricated by screen printing technology, which include forming dielectric material pastes that can be provided for screen printing. The printed dielectrics were then fired and the dielectric properties of the capacitors were investigated. Barium titanate (BaTiO3) is a famous dielectric material. In order to be fired at low temperature (<1000℃) ,some additive was added to reduce the sinter temperature of BaTiO3. The dopant LiF enhanced the densification of barium titanate at lower temperature. In this study, with the addition of 10 wt% LiF, nonstoichiometric BaTiO3 can be sintered at the temperature 900℃. The crystalline structure is still the perovskite and dielectric constant is about 2024 and the dielectric loss is less than 5% .The dielectric loss was increased as the amount of added LiF was increased.The variation of the capacitance ( when measured during the temperature between -30℃ and 130℃) was satisfied with the Y7T characteristics of EIA standard. For 10% LiF added nonstoichiometric BaTiO3, which was screen printed on the Al2O3 substrate, the dielectric constant was about 1977 and dissipation factor was about 2.638% after being sintered at 950℃ for 30 min.
中文摘要………………………………………………………………..Ⅰ
英文摘要…………………………………………………………….….Ⅲ
致謝……………………………………………………………..….…...Ⅴ
目錄…………………...…………………………………………….…..Ⅵ
圖表目錄…………………………………………………………….….Ⅶ
第一章緒論………………………………………………………..……1
1-1 前言………………………………………………..……...1
1-2 研究動機…………………..……………………………...2
1-3 研究目標…………………………..……………………...3
第二章前人相關研究…………………………………………………...4
2-1 鈦酸鋇…………………………………………..………...4
2-2 摻雜物對鈦酸鋇的影響……………..………………….14
第三章 實驗步驟及方法…...………………………………………...23
3-1 電容成分調製…………..……………………………...23
3-2 樣品製作及燒成……………………………………….25
3-3 成品電性量測及分析……………………………….…27
第四章 結果與討論……………………………………….………….28
4-1 Ba1.025TiO3添加不同比例之LiF.. ……….……………28
4-2 不同燒結溫度及持溫時間對介電層的影響…….……32
4-3 介電層厚度之討論…………………………………….37
4-4 厚膜電容之溫度特性……………………………….…41
第五章 結論……………………………………….………………….43
參考文獻……………………………………….……………………….45
[1] 黃貫達, “利用乾式法在LTCC多層結構中形成埋入電容” ,義守大學電機工程研究所 ,碩士論文,1998.
[2] 鮑忠興,“多層陶瓷電容器”,精密陶瓷元件製作及應用, 工業技術研究院 ,工業材料研究所編印,1989.
[3] 吳朗,“電子陶瓷-介電”,全欣科技圖書,p. 157-160.
[4] Victor F. Capozzi,“Multilayer Ceramic Capacitor Materials and Manufacture”,N. J. U.S.A.,1975.
[5] M. M. Bunag and S. J. H. Koenig,“Ultra Low Loss Ceramic Dielectric”, J. Am. Ceram. Soc., vol. 42, No. 9, p.442-447,1959.
[6] K. Lichtenecker,“Dielectric Constant of Natural and Synthetic Mixtures”(in Ger.), Phys. Z., 27,p. 115,1926.
[7] 汪建民,“陶瓷技術手冊(上)”,中華民國產業科技發展協進會,p. 100-103.
[8] R. M. German, “Liquid Phase Sintering”,Plenum Press,1985.
[9] E. Kostic et. al.,“Liquid Phase Sintering of Alumina”,Powder Metall. Int. 19,1987.
[10] R.M.German et. al.,“Kinetics of Liquid Phase Sintering”,Meter. Sci.&Eng., A105/106,p. 215-24,1988.
[11] W. A. Kaysser and G.Petzow,“Present State of Liquid Phase Sintering”,Powder Metallurgy, vol. 28, No. 3,1985.
[12] R. J. Brook,“The Impurity-Drag Effect and Grain Growth Kinetics”, Scripta metall., 2[7],p. 375-78,1968.
[13] B. E. Walker et.al.,“Densification and Strength of with LiF and MgO Additives”,Am. Ceram. Soc. Bull.,55[3],p. 274-76&284-85,1976.
[14] J. Haussonne et. al.,“Barium Titanate Perovskite Sintered with Lithium Fluoride”,J. Am. Ceram. Soc., 66[11],p. 801-07,1983.
[15] G.Desgardin et. al.,“ -A New Sintering Agent for -Based Capacitors“,Am. Ceram. Soc. Bull., 64[4],p. 564-70,1985.
[16] D. A. Tolino and J.B.Blum,“Effect of Ba:Ti Ratio on Densification of LiF-Fluxed ”,J. Am. Ceram. Soc., 68[11], C-292-C-294,1985.
[17] J. P. Guha and H. U. Anderson,“Reaction During Sintering of Barium Titanate with Lithium Fluoride”,J. Am. Ceram. Soc.,C-193-C-194, 69[8],1986.
[18] A.Potin et. al.,“Liquid-Phase Sintering of Barium Titanate with Lithium Fluoride”,J. Mat. Res., 2[4],p. 485-88,1987.
[19] J. M. Haussonne, G. Desgardin, PH. Bajolet, and B. Raveau, “Barium Titanate Perovskite Sintered with Lithium Fluoride”,J. Am. Ceram. Soc.,vol. 66,No. 11, p.801-807,1983.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊