跳到主要內容

臺灣博碩士論文加值系統

(44.222.104.206) 您好!臺灣時間:2024/05/28 11:51
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:侯清文
研究生(外文):Ching-Wen Hou
論文名稱:以網路結構為基礎之配電系統負載潮流分析
論文名稱(外文):A Network-Based Distribution Load Flow
指導教授:鄧人豪鄧人豪引用關係
指導教授(外文):Jen-Hao Teng
學位類別:碩士
校院名稱:義守大學
系所名稱:電機工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2001
畢業學年度:89
語文別:中文
論文頁數:80
中文關鍵詞:配電系統負載潮流配電自動化系統高斯隱合Z矩陣法高斯-賽得法牛頓-拉弗森法
外文關鍵詞:Distribution Load FlowDistribution Automation SystemGauss implicit Z-matrix methodGauss-Seidel methodNewton-Raphson method
相關次數:
  • 被引用被引用:10
  • 點閱點閱:1161
  • 評分評分:
  • 下載下載:70
  • 收藏至我的研究室書目清單書目收藏:0
本論文提出一種以匯流排電壓差為基底之配電系統快速負載潮流求解法。在電力系統中輸電系統與配電系統的網路架構及特性並不盡相同,因此輸電系統負載潮流分析程式,應用在配電系統中並不一定合適;例如傳統快速解耦牛頓-拉弗森法所做的一些假設,在配電系統中不一定成立,其中又以線路阻抗X>>R、電壓角度約為零度等,在配電系統中是不成立的,因此傳統快速解耦牛頓-拉弗森法不適合應用在配電系統中。針對傳統的負載潮流求解法在配電系統應用上之缺點,很多的新方法便應運而生。
本論文結合了牛頓-拉弗森法及等效注入電流之觀念,推導出一種以匯流排之間的電壓差為狀態變數之配電系統三相負載潮流快速求解法則。所提出之負載潮流演算法是根據配電系統的網路特性所發展而成,所以此種求解法可適用在配電系統的特殊架構。此演算法經過相解耦後,可以節省大量的運算元及記憶體空間。又因為解耦後每個單相亞可比矩陣皆為上三角矩陣,不需要LU分解及順向疊代亞可比矩陣,可以直接做反向疊代求解,所以此求解法又可以節省很多程式執行時間。另外本演算法再結合柯西荷夫電壓定律,也可以求解網狀配電系統之負載潮流,並且可以進行解耦以提昇程式執行速度,因此所提出之電壓差求解法並不會受到網路結構變化而有所影響。論文中將會提出一些測試例子,來證明此方法為一個快速有效的求解法,並且與傳統的求解方法做一番優缺點之比較,以彰顯本求解法之優越性。

Since the features of distribution systems are different from transmission systems, the solution techniques for load flow problem need to be modified. Comparing with transmission systems, distribution networks are commonly:
(a) three-phase unbalanced oriented;
(b) radial with sometimes weakly-meshed topology;
(c) with high resistance to reactance (r/x) ratio;
(d) unbalanced distributed load;
(e) extremely large number of branches/nodes.
Those features make the traditional load flow method, such as Newton-Raphson method and Gauss-Seidel method, fail to meet the requirements of efficiency and accuracy for distribution systems.
Several load flow algorithms specially designed to handle the features of distribution systems have been proposed in the literature. In the thesis, a novel and fast three-phase load flow algorithm for unbalanced radial distribution systems is proposed. The proposed method uses branch voltages as state variables and employs the Newton-Raphson algorithm to solve the load flow problem. By utilizing branch voltages as state variables, a constant Jacobian matrix can be obtained and a building algorithm for Jacobian matrix is then developed based on the observation of the constant Jacobian matrix. A solution technique, which takes the network structure and computer economy into account, is also developed. For any equipment, if its equivalent current injection or admittance matrix can be obtained, it can be easily integrated into the proposed method. Test results show the proposed method is efficient and has great potential for real-time applications.

第一章 序論………………………………………………………………1
1-1 研究動機與背景…………………………………………………1
1-2 本研究之貢獻……………………………………………………2
1-3 本論文架構………………………………………………………………3
第二章 求解負載潮流之基本資料及各種元件模型……………………5
2-1 求解負載潮流之基本資料………………………………………………5
2-1-1 匯流排資料……………………………………………………………5
2-1-2 系統資料………………………………………………………………6
2-1-3 線路資料………………………………………………………………6
2-2 各種元件模型……………………………………………………………7
2-2-1 線路模型及阻抗參數之求法…………………………………………7
2-2-2 變壓器數學模型………………………………………………………15
2-2-3 汽電共生發電機組數學模型…………………………………………18
2-2-4 電容器數學模型………………………………………………………22
第三章 一般常用傳統負載潮流求解法之簡介…………………………24
3-1 高斯隱合Z矩陣法之簡介………………………………………………24
3-2 牛頓-拉弗森法之簡介…………………………………………………27
第四章 匯流排電壓差負載潮流求解法之數學模型……………………30
4-1 輻射狀匯流排電壓差求解法之數學模型………………………………30
4-2 輻射狀匯流排電壓差解耦求解法之數學模型…………………………37
4-3 網狀匯流排電壓差求解法之數學模型…………………………………42
4-4 網狀匯流排電壓差解耦求解法之數學模型……………………………46
第五章 匯流排電壓差求解法之模擬與測試……………………………54
5-1 輻射狀網路模擬測試……………………………………………………54
5-1-1 輻射狀測試網路之基本資料…………………………………………55
5-1-2 輻射狀網路求解過程…………………………………………………58
5-1-3 輻射狀網路執行結果…………………………………………………60
5-2 網狀網路模擬測試………………………………………………………67
5-2-1 網狀測試網路之基本資料……………………………………………68
5-2-2 網狀網路求解過程……………………………………………………69
5-2-3 網狀網路執行結果……………………………………………………72
5-3 基本元件模擬測試………………………………………………………75
5-3-1 汽電共生發電機組……………………………………………………75
5-3-2 三相並聯電容器………………………………………………………77
第六章 結論與未來研究之方向…………………………………………78
6-1結論………………………………………………………………………78
6-2未來研究之方向…………………………………………………………79

[1] W. M. Lin and M. S. Chen, “An Overall Distribution Automation Structure,” Electric Power Systems Research, 10, pp. 7-19 1986.
[2] "Distribution Automation: A practical tool for shaping a more profitable future," Special Report, Electrical World, Dec. 1986, pp. 43-50.
[3] Scott D. Mac Gregor, "An Overview of Power Quality Issues and Solution", 40th IEEE Cement Industry Technical Conference, 1998, pp57-64.
[4] Gregory F.Reed, Masatoshi Takeda & Isoa Iyoda , "Improved Power Quality Solutions Using Advanced Solid-State Switching and Static Compensation Technolgies " , 1999IEEE /PES Winter Meeting, vol.2, pp1132-1137.
[5] R. R. Shoults, M. S. Chen, L. Schwobel, "Simplified Feeder Modeling for Load Flow Calculations," IEEE Trans. on Power System, Vol. 2, No. 1, pp. 168-174, Feb. 1987.
[6] T. H. Chen, M. S. Chen K.-J. Hwang, P. Kotas, and E A. Chebli, "Distribution System Power Flow Analysis - A Rigid approach," IEEE Trans. on Power Delivery, Vol. 6, No. 3, July 1991, pp. 1146-1152.
[7] B. Stott and O. Alsac, "Fast Decoupled Load Flow," IEEE PAS-93, No.3 pp. 859-867,May/June 1974.3
[8] K. A. Birt, J. J. Graffy, J. D. McDonald, and A. H. El-Abiad, " Three Phase Load Flow Program," IEEE Trans. on Power Apparatus and Systems, Vol. PAS-95, No. 1, pp. 59-65, 1976.
[9] W. M. Kersting, ”Radial Distribution Test Feeder” IEEE Distribution Planning Working Group Report, Transcations on Power System , Vol.6, No.3, August 1991, pp. 975-985.
[10] J. H. Teng, W. M. Lin, "Current-Based Power Solutions for Distribution Systems," IEEE ICPST '94 Beijing, China, pp. 414-418.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top