(3.238.235.155) 您好!臺灣時間:2021/05/11 19:20
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:蔡曄昕
研究生(外文):Tsai Yeh Hsin
論文名稱:臺灣產刺杜密葉部化學成分之研究
論文名稱(外文):Studies on the Chemical Constituents from the Leaves of Formosan Bridelia balansae
指導教授:蔡煙力
指導教授(外文):Tsai Ian Lih
學位類別:碩士
校院名稱:高雄醫學大學
系所名稱:天然藥物研究所
學門:醫藥衛生學門
學類:藥學學類
論文種類:學術論文
論文出版年:2001
畢業學年度:89
語文別:英文
論文頁數:142
中文關鍵詞:大戟科刺杜密balansenate I ~IItriterpenoidditerpenoidchromanchlorophyllbenzenoidalcohol
外文關鍵詞:EuphorbiaceaeBridelia balansae Tutchbalansenate I ~IItriterpenoidditerpenoidchromanchlorophyllbenzenoidalcohol
相關次數:
  • 被引用被引用:1
  • 點閱點閱:178
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
中文摘要
台灣產大戟科(Euphorbiaceae)植物刺杜密(Bridelia balansae Tutch)之葉部,其甲醇抽出物對A549 (ED50 = 3.49 mg/ml)、HT-29 (ED50 = 4.21 mg/ml)、KB16 (ED50 = 2.58 mg/ml)及P-388 (ED50 < 0.001 mg/ml)等癌細胞株具有抑制活性,將甲醇抽出物經分配成氯仿、正丁醇及水三個可溶部,再進行細胞毒測試後顯示氯仿可溶部對P-388 (ED50 = 0.41 mg/ml)及A549 (ED50 = 1.28 mg/ml)具有抑制活性,但正丁醇及水可溶部並未顯示活性。
因此,為探討其含有化學及細胞毒活性成分而進行分離,由氯仿可溶部得到20個化合物,包括2種長鏈酯類:balansenate I (38)、balansenate II (39);6種triterpenoid類:squalene (40)、friedelin (41)、epi-friedelinol (42)、bridelone (43) 和bridelonol (44) 、β-amyrin (45);1種diterpenoid類: trans-phytol (46);1種tetraterpenoid類:β-carotene (47);1種chroman類:a-tocopherol (48);1種tocopherol-related類:balansaol (49);2種固醇類:β-sitosterone (50) 和stigma-4,22-dien-3-one (51);1種chlorophyll:pheophytin-a (52);1種benzenoid類:p-hydroxybenzoic acid (53);1種脂肪酸類:stearic acid (54);1種alcohol類: hentriacontanol (55);2種adenine類:N6-(3-methyl-2-butenyl)adenine (56)及3-(3-methyl-2-butenyl)adenine (57)。
雖然正丁醇可溶部並未顯示細胞毒活性,但為探討含有成分以供化學分類學(chemotaxonomy)之參考而進行其成分分離,由正丁醇可溶部分離得到4個化合物,其中包括3種adenine類:9-(3-methyl-2-butenyl)adenine (58)、1-(3-methyl-2-butenyl)adenine (59)及adenine (60),和一個具有pyrrolidine-2,5-dione和imidazole熔合而成的新骨架化合物:命名為bridelonine (61)。
將氯仿可溶部所分離到之化合物再經細胞毒測試後均未顯示活性,表示可能尚未分離到本植物中具有活性之化合物,或者因這些純化合物個別雖不具活性,但當混合存在粗抽出物中反而有協同加成作用而具有抑制活性。
化合物38, 39, 43, 44, 49及61為天然物中首次發現的新化合物,58和59成分以前雖已被合成過,但為天然界首次分離得到之化合物,56過去雖被報導曾由天然物分離得到過,但係以GCMS測定其存在,且並無發表任何其他光譜資料。
所有這些分離到之化合物,均以其各種光譜數據決定其構造。
Abstract
The MeOH extract of the leaves of Formosan Bridelia balansae Tutch (Euphorbiaceae) showed cytotoxicity against A549 (ED50 = 3.49 mg/ml)、HT-29 (ED50 = 4.21 mg/ml)、KB16 (ED50 = 2.58 mg/ml) and P-388 (ED50 < 0.001 mg/ml) cancer cell lines in vitro. The MeOH extract was partitioned into CHCl3, n-BuOH and H2O-soluble parts.The CHCl3-soluble part showed cytotoxicity against P-388 (ED50 = 0.41 mg/ml) and A549 (ED50 = 1.28 mg/ml) cancer cell lines in vitro, but n-BuOH and H2O-soluble parts were devoid of cytotoxic activity.
For the investigation of the chemical and cytotoxic principles, 20 compounds were isolated from CHCl3-soluble fraction including two long chain esters: balansenate I (38), balansenate II (39); six triterpenoids: squalene (40), friedelin (41), epi-friedelinol (42), bridelone (43), the mixture of bridelonol (44) and β-amyrin (45); one diterpenoid: trans-phytol (46); one tetraterpenoid: β-carotene (47); one chromane: a-tocopherol (48); one tocopherol-related: balansaol (49); two steroids: the mixture of β-sitosterone (50) and stigma-4,22-dien-3-one (51); one chlorophyll: pheophytin-a (52); one benzenoid: p-hydroxybenzoic acid (53); one fatty acid: stearic acid (54); one alcohol: hentriacontanol (55); two adenine analogues: N6-(3-methyl-2- butenyl)adenine (56) and 3-(3-methyl-2-butenyl)adenine (57).
Although the n-BuOH-soluble fraction did not exhibit any cytotoxicity, the chemical constituents were investigated due to the purpose of chemotaxonomy. Three adenine analogues including 9-(3-methyl-2-butenyl) adenine (58), 1-(3-methyl-2-butenyl)adenine (59) and adenine (60); together with a pyrrolidine-2,5-dione and imidazole fused compound: namely bridelonine (61) were obtained.
The isolates obtained from CHCl3-soluble parts were tested for cytotoxicity, and all were devoid of cytotoxicity against A549, HT-29 and HT-29 cancer cell lines in vitro. Maybe the active principles of this plant were not isolated yet, or the isolates may have synergistic effect in cytotoxicity when before they were purified from the crude extract.
Among these isolates, 38, 39, 43, 44, 49 and 61 were new compounds obtained from nature. Although 58 and 59 were synthesized before, but they were first isolated from the plant origin. In a previous literature, 56 has been reported and determined by GCMS without any other spectral data.
The structures of these isolates were elucidated by spectroscopic analyses.
目 錄
中文摘要1
英文摘要3
第 一 章緒言5
第 二 章研究動機與目的6
第 三 章過去成分研究概要7
第 四 章結果與討論16
第一節葉部之抽取與分離16
第二節Balansenate I (38) 之結構研究23
第三節Balansenate II (39) 之結構研究31
第四節Squalene (40) 之結構研究39
第五節Friedelin (41) 之結構研究45
第六節epi-Friedelinol (42) 之結構研究49
第七節Bridelone (43) 之結構研究53
第八節Bridelonol (44)、 a-Amyrin (45)、trans-Phytol (46)
之結構研究61
第九節trans-Phytol (46) 之結構研究65
第十節β-Carotene (47) 之結構研究68
第十一節a-Tocopherol (48) 之結構研究71
第十二節Balansaol (49) 之結構研究76
第十三節β-Sitosterone (50)、Stigma-4,22-dien-3-one (51)
之結構研究81
第十四節Pheophytin-a (52) 之結構研究84
第十五節p-Hydroxybenzoic acid (53) 之結構研究88
第十六節Stearic acid (54) 之結構研究91
第十七節Hentriacontanol (55) 之結構研究94
第十八節N6-(3-Methyl-2-butenyl)adenine (56)97
第十九節3-(3-Methyl-2-butenyl)adenine (57)101
第二十節9-(3-Methyl-2-butenyl)adenine (58)107
第二十一節1-(3-Methyl-2-butenyl)adenine (59)110
第二十二節Adenine (60)114
第二十三節Bridelonine (61)117
第 五 章 結論121
第 六 章 實驗部分122
第一節 儀器與材料122
第二節 葉部之抽出與分離124
第三節 氯仿可溶部(Fr. A)之分離125
第四節 正丁醇可溶部(Fr. B)之分離129
第五節 各化合物之實驗數據130
參考文獻138
圖 目 錄
圖 1. 臺灣刺杜密葉部之分離流程-----------------------------------------17
圖 38-1. Balansenate I (38) 之1H-NMR圖譜26
圖 38-2. Balansenate I (38) 之13C-NMR圖譜26
圖 38-3. Balansenate I (38) 之DEPT圖譜27
圖 38-4. Balansenate I (38) 之COSY圖譜27
圖 38-5. Balansenate I (38) 之NOESY圖譜28
圖 38-6. Balansenate I (38) 之HETCOR圖譜28
圖 38-7. Balansenate I (38) 之HMBC圖譜29
圖 38-8. Balansenate I (38) 之EI-MS圖譜29
圖 38-9. Balansenate I (38) 之IR圖譜30
圖 39-1. Balansenate II (39)之1H-NMR圖譜34
圖 39-2. Balansenate II (39) 之13C-NMR圖譜34
圖 39-3. Balansenate II (39) 之DEPT圖譜35
圖 39-4. Balansenate II (39) 之COSY圖譜35
圖 39-5. Balansenate II (39) 之NOESY圖譜36
圖 39-6. Balansenate II (39) 之HETCOR圖譜36
圖 39-7. Balansenate II (39) 之HMBC圖譜37
圖 39-8. Balansenate II (39) 之EI-MS圖譜37
圖 39-8. Balansenate II (39) 之IR圖譜38
圖 40-1. Squalene (40) 之1H-NMR圖譜41
圖 40-2. Squalene (40) 之DEPT圖譜41
圖 40-3. Squalene (40) 之COSY圖譜42
圖 40-4. Squalene (40) 之NOESY圖譜42
圖 40-5. Squalene (40) 之HMBC圖譜43
圖 40-6. Squalene (40) 之EI-MS圖譜43
圖 40-7. Squalene (40) 之IR圖譜44
圖 41-1. Friedelin (41)之1H-NMR圖譜47
圖 41-2. Friedelin (41) 之EI-MS圖譜47
圖 41-3. Friedelin (41) 之IR圖譜48
圖 42-1. epi-Friedelinol (42) 之1H-NMR圖譜51
圖 42-2. epi-Friedelinol (42) 之IR圖譜51
圖 42-3. epi-Friedelinol (42) 之EI-MS圖譜52
圖 43-1. Bridelone (43) 之1H-NMR圖譜56
圖 43-2. Bridelone (43) 之13C-NMR圖譜56
圖 43-3. Bridelone (43) 之DEPT圖譜57
圖 43-4. Bridelone (43) 之COSY圖譜57
圖 43-5. Bridelone (43) 之NOESY圖譜58
圖 43-6. Bridelone (43) 之HETCOR圖譜58
圖 43-7. Bridelone (43) 之HMBC圖譜59
圖 43-8. Bridelone (43) 之EI-MS圖譜59
圖 43-9. Bridelone (43) 之IR圖譜60
圖 44-1. Bridelonol (44)、β-Amyrin (45)、trans-Phytol (46)
之1H-NMR圖譜63
圖 44-2. Bridelonol (44)、β-Amyrin (45)、trans-Phytol (46)
之IR圖譜63
圖 44-3. Bridelonol (44)、β-Amyrin (45)、trans-Phytol (46)
之EI-MS圖譜64
圖 46-1. trans-Phytol (46) 之1H-NMR圖譜66
圖 46-2. trans-Phytol (46) 之EI-MS圖譜66
圖 46-3. trans-Phytol (46) 之IR圖譜67
圖 47-1. β-Carotene (47) 之1H-NMR圖譜69
圖 47-2. β-Carotene (47) 之EI-MS圖譜69
圖 47-3. β-Carotene (47) 之IR圖譜70
圖 48-1. a-Tocopherol (48) 之1H-NMR圖譜72
圖 48-2. a-Tocopherol (48) 之13C-NMR圖譜72
圖 48-3. a-Tocopherol (48) 之DEPT圖譜73
圖 48-4. a-Tocopherol (48) 之COSY圖譜73
圖 48-5. a-Tocopherol (48) 之NOESY圖譜74
圖 48-6. a-Tocopherol (48) 之HETCOR圖譜74
圖 48-7. a-Tocopherol (48) 之EI-MS圖譜75
圖 48-8. a-Tocopherol (48) 之IR圖譜75
圖 49-1. Balansaol (49) 之1H-NMR圖譜79
圖 49-2. Balansaol (49) 之FAB-MS圖譜79
圖 49-3. Balansaol (49) 之NOESY圖譜80
圖 49-4. Balansaol (49) 之IR圖譜80
圖 50-1. β-Sitosterone (50)、Stigma-4,22-dien-3-one (51)
之1H-NMR圖譜82
圖 50-2. β-Sitosterone (50)、Stigma-4,22-dien-3-one (51)
之13C-NMR圖譜82
圖 50-3. β-Sitosterone (50)、Stigma-4,22-dien-3-one (51)
之EI-MS圖譜83
圖 50-4. β-Sitosterone (50)、Stigma-4,22-dien-3-one (51)
之IR圖譜83
圖 52-1. Pheophytin-a (52) 之1H-NMR圖譜86
圖 52-2. Pheophytin-a (52) 之13C-NMR圖譜86
圖 52-3. Pheophytin-a (52) 之IR圖譜87
圖 52-4. Pheophytin-a (52) 之FAB-MS圖譜87
圖 53-1. p-Hydroxybenzoic acid (53) 之1H-NMR圖譜89
圖 53-1. p-Hydroxybenzoic acid (53) 之EI-MS圖譜89
圖 53-1. p-Hydroxybenzoic acid (53) 之IR圖譜90
圖 54-1. Stearic acid (54) 之1H-NMR圖譜92
圖 54-2. Stearic acid (54) 之EI-MS圖譜92
圖 54-3. Stearic acid (54) 之IR圖譜93
圖 55-1. Hentriacontanol (55) 之1H-NMR圖譜95
圖 55-2. Hentriacontanol (55) 之EI-MS圖譜95
圖 55-3. Hentriacontanol (55) 之IR圖譜96
圖 56-1. N6-(3-Methyl-2-butenyl)adenine (56) 之1H-NMR圖譜99
圖 56-2. N6-(3-Methyl-2-butenyl)adenine (56) 之EI-MS圖譜99
圖 56-3. N6-(3-Methyl-2-butenyl)adenine (56) 之IR圖譜100
圖 57-1. 3-(3-Methyl-2-butenyl)adenine (57) 之1H-NMR圖譜103
圖 57-2. 3-(3-Methyl-2-butenyl)adenine (57) 之13C-NMR圖譜103
圖 57-3. 3-(3-Methyl-2-butenyl)adenine (57) 之DEPT圖譜104
圖 57-4. 3-(3-Methyl-2-butenyl)adenine (57) 之NOESY圖譜104
圖 57-5. 3-(3-Methyl-2-butenyl)adenine (57) 之COSY圖譜105
圖 57-6. 3-(3-Methyl-2-butenyl)adenine (57) 之HETCOR圖譜105
圖 57-7. 3-(3-Methyl-2-butenyl)adenine (57) 之IR圖譜106
圖 57-8. 3-(3-Methyl-2-butenyl)adenine (57) 之EI-MS圖譜106
圖 58-1. 9-(3-Methyl-2-butenyl)adenine (58) 之1H-NMR圖譜108
圖 58-2. 9-(3-Methyl-2-butenyl)adenine (58) 之EI-MS圖譜108
圖 58-3. 9-(3-Methyl-2-butenyl)adenine (58) 之IR圖譜109
圖 59-1. 1-(3-Methyl-2-butenyl)adenine (59) 之1H-NMR圖譜111
圖 59-2. 1-(3-Methyl-2-butenyl)adenine (59) 之COSY圖譜111
圖 59-3. 1-(3-Methyl-2-butenyl)adenine (59) 之NOESY圖譜112
圖 59-4. 1-(3-Methyl-2-butenyl)adenine (59) 之EI-MS圖譜112
圖 59-5. 1-(3-Methyl-2-butenyl)adenine (59) 之IR圖譜113
圖 60-1. Adenine (60) 之1H-NMR圖譜115
圖 60-2. Adenine (60) 之EI-MS圖譜115
圖 60-3. Adenine (60) 之IR圖譜116
圖 61-1. Bridelonine (61) 之1H-NMR圖譜119
圖 61-2. Bridelonine (61) 之NOESY圖譜119
圖 61-3. Bridelonine (61) 之EI-MS圖譜120
圖 61-4. Bridelonine (61) 之IR圖譜120
表 目 錄
表 1.土密樹屬植物過去分離之化學成分及文獻考察8
表 2.Balansenate I (38) 核磁共振數據25
表 3.Balansenate II (39) 核磁共振數據33
表 4.Squalene (40) 核磁共振數據40
表 5.Bridelone (43) 核磁共振數據55
表 6.Balansaol (49) 核磁共振數據78
表 7.化合物56、57、59及60核磁共振數據之比較114
參考文獻
1.Hsieh CF, Chaw SM, Wang JC. “Euphorbiaceae in Flora of Taiwan”, Editorial committee of the Flora of Taiwan, Taipei, Taiwan, R. O. C., 2nd ed, pp. 430- 432 (1993).
2.Editorial committee of Zhonghua Bencao. “Zhonghua Bencao”, Shanghai Scientific Technological Published Co., Shanghai, China, 1999, Vol. 4, P. 763-764.
3.Addae-Mensah I, Achenbach H. “Terpenoids and flavonoids of Bridelia ferruginea”, Phytochemistry, 24, 1817-1819 (1985).
4.Addae-Mensah I, Munenge RW. “Quercetin-3-neohesperidoside (rutin) and other flavonoids as the active hypoglycaemic agents of Bridelia ferruginea”, Fitoterapia, 60, 359-362 (1989).
5.Bruyne TD, Cimanga K, Pieters L, Claeys M, Dommisse R, Vlietinck A. “Gallocatechin-(4’-O-7)-epigallocatechin, a new biflavonoid isolated from Bridelia ferruginea”, Natural Product Letters, 11, 47-52 (1997).
6.Cimanga K, Bruyne TD, Apers S, Pieters L, Totte J, Kambu K, Tona L, bakana P, Ufford LQ, Beukelman C, Labadie R, Vlietinck AJ. “Complement-inhibiting constituents of Bridelia ferruginea stem bark”, Planta Medica, 65, 213~217 (1999).
7.Pegel KH, Rogers CB. “Constituents of Bridelia micrantha”, Phytochemistry, 7, 655-656 (1968).
8.Hui WH, Fung ML. “An examination of the Euphorbiaceae of Hong Kong-III. The occurrence of triterpenoids and steroids in Bridelia monoica”, Phytochemistry, 7, 2069~2069 (1968).
9.Boonyaratavej S, Bates RB, Caldera S, Suvannachut K. “A new triterpenoid from Bridelia tomentosa”, Journal of Natural Products, 53, 209-211, (1990).
10.Carpenter RC, Sotheeswaran S, Sultanbawa MUS, Balasubramaniam S. “Triterpenoids of five Euphorbiaceae species of Srilanka”, Phytochemistry, 19, 1171-1174 (1980).
11.Boonyaratavej S, Tantayanontha S, Prapipit Kitchanachai P, “Trans-triacontyl-4-hydroxy-3-methoxycinnamate, a new compound from the Thai plant Bridelia ovata”, Journal of Natural Products, 55, 1761-1763 (1992).
12.Carpenter CR, Sotheeswaran S, Sultanbawa MUS, Balasubramaniam. S. “Preliminary chemical examination of the leaves of Bridelia stipularies”, Bulletin Central Research Institute, Universal. Travancore Ser. A, 1, 40-50 (1950) [Chemical Abstract,: 47, 7737g. (1953)].
13Murahashi SI, Naota T, Ito K, Maeda Y, Taki H. “Ruthenium-catalyzed oxidative transformation of alcohols and aldehydes to esters and lactones”, Journal of Organic Chemistry, 52, 4319-4327 (1987).
14.Metz P, Mues C. “Thermal O→C rearrangement of N-phenyl-allylimidates”, Tetrahedron, 44, 6841-6853 (1988).
15.Momose DI, Iguchi K, Sugiyama T, Yamada Y. “Reaction of organic halides with chlorotris-(triphenylphosphine)cobalt(I)”, Chemical and Pharmaceutical Bulletin, 32, 1840-1853 (1984).
16.Wu TS, Chang FC, Wu PL, Kuoh CS, Chen IS. “Constituents of leaves of Tetradium glabrifolium”, Journal of the Chinese Chemical Society, 42, 929-934 (1995).
17.Akihisa T, Yamamoto K, Tamura T, Kimura Y, Iida T, Nambara T, Chang FC. “Triterpenoid ketones from Lingnania chungii mcclure: arborinone, friedelin and glutinone”, Chemical and Pharmaceutical Bulletin, 40, 789-791 (1992).
18.Klass J, Tinto WF. “Friedelane triterpenoids from Peritassa compta: “Complete 1H and 13C assignments by 2d nmr spectroscopy”, Journal of Natural Products, 55, 1626-1630 (1992).
19.Betancor C, Freire R, Gonzalez AG, Salazar JA, Pascard C, Prange T. “Three triterpenoids and other terpenoids from Catha cassinoides”, Phytochemistry, 19, 1989-1993 (1980).
20.Salazer GCM, Silva GDF, Duarte LP, Vieira Filho SA, Lula IS. “Two epimeric friedelane triterpenes isolated from Maytenus truncata reiss: 1H and 13C chemical shift assignments”, Magnetic Resonance in Chemistry, 38, 977-980 (2000).
21.Alves JS, Castro JCM, Freire MO, Cunha EVL, Barbosa-filho JM, Silva MS. “Complete assignment of the 1H and 13C NMR spectra of four triterpenes of the ursane, artane, lupane and friedelane groups”, Magnetic Resonance in Chemistry, 38, 201-206 (2000).
22.Kikuchi T, Yokoi T, Niwa M, Shingu T. “Application of homonuclear internuclear double resonance technique in triterpene field. I. Nuclear overhauser effects between methyl groups”, Chemical and Pharmaceutical Bulletin, 25, 2078-2081 (1977).
23.Zakaria M, Jeffreys JAD, Waterman PG, Zhong SM. “Naphthoquinones and triterpenes from some Asian diospyros species”, Phytochemistry, 23, 1481-1484 (1984).
24.Aoki T, Takagi K, Hirata T, Suga T. “Two naturally occurring acyclic diterpene and norditerpene aldehydes form Tetragonia tetragonoides”, Phytochemistry, 21, 1361-1363 (1982).
25.Sims JJ, Pettus JA. “Isolation of free cis and trans-phytol from the red alga Gracilaria andersoniana”, Phytochemistry, 15, 1076-1077 (1976).
26.Bjornland T, Liaaen-Jensen S, Throndsen J. “Carotenoids of the marine chrysophyte Pelagococcus subviridis”, Phytochemistry, 28, 3347-3353 (1989).
27.Matsuo M, Urano S. “13C NMR spectra of tocopherols and 2,2-dimethylchromanols”, Tetrahedron, 32, 229-231 (1976).
28.Brownstein S, Burton GW, Hughes L, Ingold KU. “Chiral effects on the 13C resonances of a-tocopherol and related compounds. A novel illustration of newman’s rule of six”, Journal of Organic Chemistry, 54, 560-569 (1989).
29.Kitajima J, Kimizuka K, Arai M, Tanaka Y. “Constituents of Ficus pumila leaves”, Chemical and Pharmaceutical Bulletin, 46, 1647-1649 (1998).
30.Almeida MLS, Kocovsky P, Backvall JE. “Ruthenium-catalyzed oppenauer-type oxidation of 3β-hydroxy steroids . A highly efficient entry into the steroidal hormones with 4-en-3-one functionality”, Journal of Organic Chemistry, 61, 6587-6590 (1996).
31.Barrero AF, Sanchez JF, Alvarez-manzaneda EJ, Munoz Dorado M, Haidour A. “Terpenoids and sterols form the wood of Abies pinsapo”, Phytochemistry, 32, 1261-1265 (1993).
32.Nakatani Y, Ourisson G, Beck JP. “Chemistry and biochemistry of Chinese drugs. VII. Cytostatic pheophytins from silkworm excreta, and derived photocytotoxic pheophorbides”, Chemical and Pharmaceutical Bulletin, 29, 2261-2269 (1981).
33.Scott KN. “Carbon-13 nuclear magnetic resonance of biologically important aromatic acids. I. Chemical shifts of benzoic acid and derivatives”, Journal of the American Chemical Society, 29, 8564-8568 (1972).
34.Kuo YH, Yeh MH .“Chemical constituents of heartwood of Bauhinia purpurea”, Journal of the Chinese Chemical Society, 44, 379-383 (1997).
35.Dupont MP, Llabres G, Delaude C, Tchissambou L, Gastmans JP. “Sterolic and triterpenoidic constituents of stem bark of Drypetes gossweileri”, Planta Medica, 63, 282~284 (1997).
36.Bhakuni DS, Satish S, Shukla YN, Tandon JS. “Chemical constituents of diospyros buxifolia, D. tomentosa, D. ferra, D. lotus, Rhus parviflora, Polygonum recumbens, Balanites aegyptiaca and Pyrus pashia”, Phytochemistry, 10, 2829~2831 (1971).
37.Itaya T, Tanaka F, Fujii T, Leonard NJ. “An improved procedure for the synthesis of 1-alkyladenines: removal of the ribofuranosyl group from 1-benzyl-, 1-(3-methyl-2-butenyl)-, and 1-allyladenosine hydrobromide in acetic acid”, Chemical and Pharmaceutical Bulletin, 25, 1449-1452 (1977).
38.Yokota T, Takahashi N. “Cytokinins in shoots of the chestnut tree”, Phytochemistry, 19, 2367-2369 (1980).
39.Evidente A, Iacobellis NS, Vellone R, Sisto A, Surico G. “2’-deoxyzeatin riboside and other cytokinins in culture filtrates of Pseudomonas amygdali”, Phytochemistry, 28, 2603-2607 (1989).
40.Leonard NJ, Deyrup JA. “The structure of triacanthine”, Journal of the American Chemical Society, 82, 6202-6203 (1960).
41.Leonard NJ, Deyrup JA. “The chemistry of triacanthine”, Journal of the American Chemical Society, 84, 2148-2160 (1962).
42.Tanaka YM, Hashimoto Y, Yanagisawa K, Abe H, Uchiyama M. “Partial structure of a spore germination inhibitor from a cellular slime mold, Dictyostelium discoideum”, Agriculture Biological Chemistry, 39, 1929-1932 (1975).
43.Miyaki M, Iwase K, Shimizu B. “Intermolecular rearrangement of N’-acyltriacanthine”, Chemical and Pharmaceutical Bulletin, 14, 87-88 (1966).
44.Miyaki M, Shimizu B. “N→N alkyl and glycosyl migration of purines and pyrimidines. III. N→N alkyl and glycosyl migration of purine derivatives”, Chemical and Pharmaceutical Bulletin, 18, 1446-1456 (1970).
45.Shimizu B, Miyaki M. “N→N alkyl and glycosyl migrations of purines and pyrimidines. I. A new migrations of 3-alkyl-N6-acyladenine”, Chemical and Pharmaceutical Bulletin, 18, 570-580 (1970).
46.Fujii T, Saito T, Kizu K, Hayashibara H, Kumazawa Y, Nakajima S, Fujtsawa T. “Purines. XLVIII.1) syntheses and proton nuclear magnetic resonance study of 2-deuterioadenines substituted or unsubstituted at the 9-position and of their N-oxygenated derivatives”, Chemical and Pharmaceutical Bulletin, 39, 301-308 (1991).
47.48.Muller CE, Deters D, Dominik A, Pawlowski M. “Synthesis of paraxanthine and isoparaxanthine analogs (1,7-and 1,9-substituted xanthine derivatives”, Synthesis, 1428-1436 (1998).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔