(34.229.64.28) 您好！臺灣時間：2021/05/06 07:05

詳目顯示:::

:

• 被引用:0
• 點閱:110
• 評分:
• 下載:0
• 書目收藏:1
 這篇論文所要探討的是三機組裝式流線型批次排程問題之完工時間最小化。在這個問題，第一台機器與第二台機器是一對平行處理的零組件製造機器，第三台機器是批次處裡的組裝機器。本論文分別對幾個特殊化的問題提出有效的演算法來求最佳解，並且證明3MAF/δ→β, pi2 = p/Cmax這個特殊化問題是NP-hard。此外，本論文亦提出最佳解的下界規範，並且提出兩個有效的工作排序經驗法則演算法，以經驗法則演算法搭配動態規化演算法求取近似解。在研究中我們將所提的演算法與其它三個之前學者提出的演算法做比較，從實驗數據上得知，本研究所提出的兩個演算法無論在執行效率或精確度上皆優於之前學者所提的三個演算法。
 This thesis addresses a three-machine assembly-type flowshop scheduling problem. Machines one and two are fabrication areas arranged as two parallel machines for producing component parts discretely, and machine three is an assembly line arranged as a flowshop for receiving component parts in batches. In this study, we explore useful properties for some special cases and present an NP-hardness proof for a special case. We define a lower bound for solutions to the generic three-machine assembly-type flowshop batch scheduling problem, and then devise several heuristic algorithms and dynamic programming procedures to find approximate solutions. Computational experiments are also conducted to study the effectiveness of the proposed algorithms. Finally, we give some concluding remarks and directions for possible further studies.
 Chapter 1. Introduction........................................1 Chapter 2. Problem Formulation and Literature Review...........3 2.1 Problem Formulation........................................3 2.2 Literature Review..........................................5 Chapter 3. Complexity Results..................................8 3.1 Efficient Algorithms for Four Special Cases................8 3.2 NP-Hardness Proofs........................................11 Chapter 4. Heuristic Algorithms and Computational Experiments.14 4.1 Heuristic Algorithms......................................14 4.2 Numerical Results.........................................16 Chapter 5. Conclusions and Further Studies....................26 Bibliography..................................................27
 [1] A. Agnetis, D. Pacciarelli and F. Rossi (1997), “Batch scheduling in a two-machine flowshop with limited buffer”, Discrete Applied Mathematics 72, 243-260.[2] J.H. Ahmadi, R.H. Ahmadi, S. Dasu and C.S. Tang (1992), “Batching and scheduling jobs on batch and discrete processors”, Operations Research 39, 750-763.[3] S. Albers and P. Brucker (1993), “The complexity of one-machine batching problems”, Discrete Applied Mathematics 47, 87-107.[4] A. Allahverdi, J.N.D. Gupta, T. Aldowaisan (1999), “A review of scheduling research involving setup considerations”, Omega 27, 219-239.[5] K.R. Baker (1975), “A comparative survey of flowshop problems”, Operations Research 23, 62-73.[6] K.R. Baker (1995), “Lot streaming in the two-machine flow shop with setup times”, Annals of Operations Research 57, 1-11.[7] P. Brucker, A. Gladky, H. Hoogeveen, M.Y. Kovalyov, C.N. Potts, T. Tautenhahn and S.L. Van De Delde (1998), “Scheduling a batching machine”, Journal of Scheduling 1, 31-54.[8] T.C.E. Cheng, Z.-L. Chen, M.Y. Kovalyov and B.M.T. Lin (1996), “Parallel-machine batching and scheduling to minimize total completion time”, IIE Transactions 28, 953-956.[9] T.C.E. Cheng, J.N.D. Gupta and G. Wang (2000), “A review of flowshop scheduling research with setup times”, Production and Operations Management 9, 262-282.[10] T.C.E. Cheng, B.M.T. Lin and A. Toker (2000), “Makespan minimization in the two-machine flowshop batch scheduling problem”, Naval Research Logistics 47, 128-144.[11] T.C.E. Cheng and Q. Wang (1998), “Batching and scheduling to minimize the makespan in the two-machine flowshop”, IIE Transactions 30, 447-453.[12] E.G.Jr. Coffman, A. Nozari and M. Yannakakis (1989), “Optimal scheduling of products with two subassemblies on a single machine”, Operations Research 37, 426-436.[13] E.G.Jr. Coffman, M. Yannakakis, M.J. Magazine and C. Santos (1990), “Batch sizing and job sequencing on a single machine”, Annals of Operations Research 26, 135-147.[14] R.W. Conway, W.L. Maxwell and L.W. Miller (1967), Theory of Scheduling, Addison Wesley, Reading, MA.[15] F.D. Croce, V. Narayan and R. Tadei (1996), “The two-machine total completion time flow shop problem”, European Journal of Operational Research 90, 227-237.[16] R.A. Dudek, S.S. Panswalkar and M.L. Smith (1991), A review of flowshop scheduling, Presented at 1991 ORSA/TIMS meeting in Nashville, TN.[17] M.R. Garey, D.S. Johnson and R. Sethi (1976), “The complexity of flowshop and job shop scheduling”, Mathematics of Operations Research 1, 117-129.[18] A. Guinet, M.M. Solomon, P.K. Kedia and A. Dussauchoy (1996), “A computational study of heuristics for two-stage flexible flowshops”, International Journal of Production Research 34, 1399-1415.[19] S.M. Johnson (1954), “Optimal two- and three-stage production schedules with setup times included”, Naval Research Logistics Quarterly 1, 61-67.[20] J.S. Kim, S.H. Kang and S.M. Lee (1997), “Transfer batch scheduling for a two-stage flowshop with identical parallel machines at each stage”, Omega 25, 547-555.[21] C.Y. Lee (1997), “Minimize the makespan in the two-machine flowshop scheduling problem with an availability constraint”, Operations Research Letters 20, 129-139.[22] Chung-Yee Lee, T.C.E. Cheng and B.M.T. Lin (1993), “Minimizing makespan in the 3-machine assembly-type flowshop scheduling problem”, Management Science 39, 616-625.[23] C.Y. Lee, L. Lei and M. Pinedo (1997), “Current trends in deterministic scheduling”, Annals of Operations Research 70, 1-41.[24] C.Y. Lee and S.D. Liman (1992), “Single machine flow-time scheduling with scheduled maintenance”, Acta Informatica 29, 375-382.[25] C.Y. Lee, R. Uzsoy and L.A. Martin-Vega (1992), “Efficient algorithms for scheduling semiconductor burn-in operations”, Operations Research 40, 764-775.[26] B.M.T. Lin and T.C.E. Cheng (1998), “Two-machine flowshop batching and scheduling”, Technical Report No. 18/97-98, Department of Management, The Hong Kong Polytechnic University,.[27] B.M.T. Lin and T.C.E. Cheng (1998), “Assembly and fabrication scheduling in a two-machine flowshop”, Unpublished Manuscripts,.[28] I.N. Lushchakova and S.A. Kravchenko (1998), “Two-machine shop scheduling with zero and unit processing times”, European Journal of Operational Research 107, 378-388.[29] M. Pinedo (1995), “Scheduling Theory, Algorithms, and Systems”, Prentice Hall, New Jersey,.[30] C.N. Potts and M.K. Kovalyov (2000), “Scheduling with batching: a review”, European Journal of Operational Research 102, 228-249.[31] C.N. Potts and L.N. Van Wassenhove (1992), “Integrating scheduling with batching and lot-sizing: A review of algorithms and complexity”, Journal of the Operational Research Society 43, 395-406.[32] A. Reisman, A. Kumar and J. Motwani (1997), “Flowshop scheduling/sequencing research: a statistical review of the literature, 1952-1994”, IEEE Transactions on Engineering Management 44, 1997, 316-329.[33] D.F. Shallcross (1992), “A polynomial algorithm for a one machine batching problem”, Operations Research Letters 11, 213-218.[34] C.S. Sung and S.H. Yoon (1998), “Minimizing total weighted completion time at a pre-assembly stage composed of two feeding machines”, International Journal of Production Economics 54, 247-255.[35] S. Webster and K.R. Baker (1995), “Scheduling groups of jobs on a single machine”, Operations Research 43, 692-703.
 國圖紙本論文
 推文當script無法執行時可按︰推文 網路書籤當script無法執行時可按︰網路書籤 推薦當script無法執行時可按︰推薦 評分當script無法執行時可按︰評分 引用網址當script無法執行時可按︰引用網址 轉寄當script無法執行時可按︰轉寄

 1 流程型工廠在雙評估準則下之排程研究 2 流程式排程---多準則啟發式演算法之研發與績效評估 3 跳躍式no-wait生產線工件排程方法之研究 4 雙機流線型機組上總加權延遲時間最小化之分枝界定法 5 流線型生產排程問題之新解題策略 6 雙機流線型批次處理排程問題之工作總完工時間最小化 7 在機器使用受限的條件下單機排程之研究 8 修正式NEH基因演算法(MNGA)之應用-以流程型生產排程總完工時間極小化問題為例 9 應用基因演算法於多目標需求之流程型工廠排程問題 10 有優先順序關係的兩台流線型機組之排程 11 考慮工件到達時間與機台限制之二階段成批排程問題 12 共用機台之跳躍式不允許等待流程式生產排程 13 作業處理可中斷之開放工廠雙績效目標排程問題之研究 14 平行流線型機組排程-總完工時間之最小化 15 具有線性退化工作件在單機排程最大完工時間最小化之研究

 1 呂依倫、李志仁、李哖. 1992. 培養基成分對素心蘭種子無菌發芽之影響. 中國園藝. 38（3）：161-169. 2 呂依倫、李哖. 1990. 鳳蘭之無菌發芽. 中國園藝. 36：198-209. 3 涂美智、李哖. 1988. 氮素、蔗糖濃度及光強度對蝴蝶蘭種子發芽及幼苗生長之影響. 中國園藝. 34：293-302. 4 莊錦華、李哖. 1986. 活性碳、蔗糖與無機鹽類濃度對台灣一葉蘭種子發芽及幼苗生長之影響. 中國園藝. 32：61-69.

 1 有優先順序關係的兩台流線型機組之排程 2 流線型生產排程問題之新解題策略 3 雙機流線型批次處理排程問題之工作總完工時間最小化 4 平行流線型機組排程-總完工時間之最小化 5 螞蟻族群演算法針對排程問題之新解題模式 6 螞蟻族群演算法於生產排程之應用 7 雙機流線型機組上總加權延遲時間最小化之分枝界定法 8 考慮階段退化時間之單機排程 9 資料品質衡量量表之建構－半導體產業資料消費者觀點 10 哈佛商業評論通覽法 11 一個基於RBAC 且具有信譽管理能力的網路服務二段式存取機制 12 差異化生產流程之批次排程 13 創新動態學之探討-以「宏碁新經營模式」為例 14 以Google搜尋引擎為基礎之中文剽竊偵測系統 15 差異化生產流程之完工時間最小化

 簡易查詢 | 進階查詢 | 熱門排行 | 我的研究室