跳到主要內容

臺灣博碩士論文加值系統

(44.223.39.67) 您好!臺灣時間:2024/05/26 13:29
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:劉正達
研究生(外文):Cheng Dar Liou
論文名稱:動態參數於結構構件挫屈載重之測定分析
論文名稱(外文):Determination of the Buckling Load of Structural Element Using Vibratory Data
指導教授:郭其珍郭其珍引用關係
指導教授(外文):Cheer Germ Go
學位類別:博士
校院名稱:國立中興大學
系所名稱:土木工程學系
學門:工程學門
學類:土木工程學類
論文種類:學術論文
論文出版年:2001
畢業學年度:89
語文別:英文
論文頁數:84
中文關鍵詞:挫屈載重動態參數自然振動頻率振態
外文關鍵詞:buckling loadvibratory datanatural frequencymode shape
相關次數:
  • 被引用被引用:0
  • 點閱點閱:184
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
摘 要
挫屈(Buckling)現象為結構系統或構件,承受壓力作用到達某一臨界點時,對外力作用失去抵抗能力而呈中性平衡之現象,此現象並不造成結構材料之破壞,但其對外力失去抵抗作用而可能產生之大量變位,將造成構件失去穩定性而側潰。故壓力構件挫屈現象之發生並不單由應力達到某一材料強度而產生,係受到多種因素的影響,包括構件尺寸、邊界束制條件、構件材料性質等,而構件尺寸及材料性質較為容易掌握,邊界束制情況則因工程技術上的困難,邊界接頭部份處理難以完美,較難達到設計要求,使壓力構件之挫屈載重與理論值有相當的出入,為了整體結構之穩定性考量,於實務設計上常採用較大的安全係數,因此往往造成設計上的過於保守及材料的浪費。為了實務設計的需要,發展一套非破壞的試驗方式,以分析壓力構件之挫屈載重實有其必要性。
現今,由於量測技術之高度發展,結構構件之動態參數可由模態分析方法準確求得,因此本文建議於結構構件之挫屈載重量測方法,可由結構構件之振動參數,即自然振動頻率及振型求取影響函數,再以力法之觀念求取結構構件之挫屈載重,本文所建議之方法適用於柱、初始彎曲桿件、平版、以及薄壁樑等結構構件,並且可同時求得初始彎曲桿件之載重-變位圖。整個試驗分析過程不用施加軸力及預知材料性質,並且適用於各種邊界束制條件。
ABSTRACT
Buckling is one of the major causes of failure in structures, and therefore the possibility of buckling should always be considered in design. In design analysis, the assumed conditions are usually made in advance and then the buckling load was derived. However, in engineering work, the structural integrity is often not as reliable as expected due to the immaturity of current engineering techniques. Thus the actual load response for a structural member is sometimes not consistent with that of design predictions. For design considerations, it is necessary to establish an analytical method for determining the buckling load of structural member experimentally. In this paper, a nondestructive testing approach using dynamical characteristics of natural frequencies and vibration mode shapes for predicting the buckling loads of structures such as imperfection columns, flat plates, and thin-walled beam is proposed. This approach is also used to establish the load-deflection curve of the imperfect column. The proposed method does not require the application of axial load and is feasible for arbitrary types of boundary conditions. Several examples and discussion are included to illustrate the salient features and validity of it.
封面
ABSTRACT(CHINESE)
ABSTRACT
CONTENTS
LIST OF TABLES
LIST OF FIGURES
LIST OF SYMBOLS
CHAPTER 1 INTRODUCTION
CHAPTER 2 LITERATURE SURVEY
2.1 Static Method
2.2 Dynamic Method
CHAPTER 3 LOAD-RESPONSE DETERMINATION FOR IMPERFECTION COLUMN
3.1 Analysis Model
3.2 Flexibility Matrix
3.3 Solution Considerations
3.4 Feasibility of Experimental Identification
3.5 Discussions
3.6 Conclusions
CHAPTER 4 BUCKLING LOAD A FLAT PLATE
4.1 Analysis Model
4.2 Establishment of the Flexiblity Matrix
4.3 Solution considerations
4.4 Feasiblity of Experimental Identification
4.5 Conclusions
CHAPTER 5 FLEXURAL-TORSIONAL BUCKLING OF A THIN-WALLED BEAM
5.1Analysis Model
5.2 Flexibility Matrix
5.3 Solution Considerations
5.4 Feasibility of Experimental Identification
5.5 Conclusions
CHAPTER 6 CONCLUDING REMARKS
REFERENCES
APPENDIX I
References
Argyris, J.H., Hilpert, O., Malejannakis G.A. and Scharpf D.W. (1979) “On the geometrical stiffness of a beam in space- a consistent V.W. approach”, Computer Methods In Applied Mechanics and Engineering, 120, 105-131.
Ariratnam, E.E.(1961),“The Southwell method for predicting critical loads of elastic structures”, Quarterly Journal of Mechanical and Applied Mathematics, 14, part Ⅱ, 137-153.
Barsoum, R. S. and Gallagher, Richard H. (1970), “Finite element analysis of torsional and torsional-flexural stability problems”, International Journal for Numerical Method in Engineering, 2, 335-352.
Baruch, M. (1970),“Undestructive determination of buckling loads of an elastic bar”, AIAA Journal, 8(12), 2274-2276.
Baruch, M. (1973),“Integral equations for nondestructive determination of buckling loads for elastic plate and bars”, Israel Journal of Technology, 11, 1-8.
Bisplinghoff, R.L., Ashley, H. and Halfman, R. L. (1955), Aeroelasticity, Addison - Wesley, New York.
Bradford, Mark Andrew and Cuk, Peter E. (1988),“Elastic buckling of tapered monosymmetric Ι-beams”, Journal of Structural Engineering, 114(5), 977-996.
Bradford, Mark Andrew and Ronagh, Hamid Reza (1997),“Generalized elastic buckling of restrained Ι-beams by FEM”, Journal of Structural Engineering, 123(12), 1631-1637.
Fok, W.C and Yuen, M.F.(1981), “Modified pivot plot for critical load calculation of rectangular plates under edge compression”, Journal of Mechanical engineering Science, 23(4), 167-170.
Ghali, A. and Neville, A.N. (1978), Structural Analysis, Champman and Hall Ltd.
Go, C.G., Lin, Y.S. and Khor, E.H.(1997), “ Experimental determination of the buckling load of a straight structural member by using dynamic parameters”, Journal of Sound and Vibration, 205(3), 257-264.
Go, C.G., Liou, C.D.(2000),“Experimental determination of the buckling load of a flat plate by the use of dynamic parameters”,Structural Engineering and Mechanics, 9(5), 483-490.
Hillier, F.S. and Liberman, Q. J. (1974), Operations Research, Hoden-Day, San Francisco.
Horton, W.H. and Struble, D.E.(1970),“Nondestructive technique in prediction of buckling loads of a column”, 13th Annual Israel Conference on Aviation and Aeronautics, Tel. Avia-Haifa.
Horton, W.H., Nasser, E.M and Singhal, M.K.(1977),“Determination of the critical loads of shells by nondestructive methods”, Experimental Mechanics,17, 154-160.
Jacobson, M.J and Wenner, M.L.(1968),“Predicting buckling loads from vibration data”, Experimental Mechanics, 8(9), 35-38.
Jones, R.E and Green, B.E.(1976),“Force/Stiffness technique for nondestructive buckling testing”, Journal of Aircraft, 13, 262-269
Joshi, A. and Suryanarayan, S. (1991), “Iterative method for coupled flexural-torsional vibration of initially stressed beams”, Journal of Sound and Vibration, 146(1), 81-92.
Jubb, J.E.M., Phillips, I.G and Becker, H.(1975),“Interrelation of structural stability, stiffness, residual stress and natural frequency”, Journal of Sound and Vibration, 39, 121-134.
Kielb, R.E. and Han, L.S.(1980),“Vibrations and buckling of rectangular plates under in-plane hydrostatic loading”, Journal of Sound and Vibration, 70(4), 543-555
Laura, P.A.A. and Rossi, R.E. (1989),“On the relative accuracy and relative difficulties of vibrations and buckling problems of structural elements”, Journal of Sound and Vibration , 134(3), 381-387.
Lurie, R. (1952),“Lateral vibration as related to structural stability”, Journal of Applied Mechanics, 19, 195-203.
Massonet, CH. (1940),“Les relations entre les modes normauz de vibration et la stabilite des systems elastique”, Geomaere, Bruxelles, Belgium
McGee, O. G., Owings, M.I. and Harris, J.W. (1993),“Torsional vibration of pretwisted thin-walled cantileveredΙ-beams”, Computer and Structures, 47(1), 47-56.
Meirovitch, Leonard (1967), Analytical Methods In Vibration, The Macmillan Company, New York
Mujundar, P.M. and Suryanarayan, S. (1989),“Nondestructive techniques for prediction of buckling loads - a review”, Journal of the Aeronautical Society of India, 41, 205-223.
Roorda, J.(1967),“Some thought on the Southwell plot”, Journal of Engineering Mechanical Div., Proc. ASCE, 93, No.EM6, 37-48.
Sang, Z.T., Chang, K.C. and Lee, G.C. (1988),“A simple method for measuring local buckling of thin plates”, Experimental Mechanics, 28, 20-23 .
Schneider, Jr., M.H. and Tracy, J.J.(1989),“The use of modal parameters in the prediction of buckling of externally pressurized shell: part Ⅰ- analytical consideration”, Proc. 7th Int. Modal Analysis Conf., Ⅱ, 1319-1328.
Segall, A. and Baruch, M. (1980),“A nondestructive dynamic method for determination of the critical load of elastic columns”, Experimental Mechanics, 20, 285-288.
Segall, A. and Springer, G. S. (1986),“A dynamic method for measuring the critical loads of elastic flat plate”, Experimental Mechanics, 26, 354-359.
Singer, Josef (1988), Buckling of Structures-Theorey and Experiment, The Josef Singer Anniversary Volume, Elsevier, New York
Southwell, R.V. (1932),“On the analysis of experimental observations in problems of elastic stability ”, Prof. Of Royal Soc., London, Series A, 135, 601-616.
Souza, M.A and Assaid, L.M.B.(1991),“A new technique for the prediction of buckling loads from nondestructive vibration tests”, Experimental Mechanics , 31(2), 93-97.
Spencer, H.H and Walker, A.C.(1975),“Critique of Southwell plot with proposals for alternative methods”, Experimental Mechanics , 15, 303-310
Sweet, A. L. and Genin, J. (1971),“Identification of a model for predicting elastic buckling”, Journal of Sound and Vibration, 14, 317-324.
Sweet, A. L. , Genin, J. and Mlakar, P. F. (1976),“Vibratory identification of beam boundary conditions”, Journal of Dynamic System, Measurement and Control, 98, 385-391.
Sweet, A. L., Genin, J. and Mlakar, P. F. (1976),“Determination of column buckling criteria using vibratory data”, Experimental Mechanics , 17, 385-391.
Szilard, Rudolph. (1974), Theory and Analysis of Plates, Prentice-Hall, Englewood Cliffs,N.J.
Timoshenko, S. P. and Gere, J. M. (1984), Theory of Elastic Stability, McGraw — Hill, New York.
Trahair, N. S. and Kitipornchai, Sritawat (1971),“Elastic lateral buckling of stepped Ι-beams”, Journal of Structural Division,ASCE, 97, No. ST10, 2535-2548.
Trahair, N.S. (1993), Flexural-Torsional Buckling of Structures, Boca Raton, FL:CRC
Yoo, C.H., Young, J.K. and Davidson, J.S. (1996),“Buckling analysis of curved beam-columns by finite-element discretization”, Journal of Engineering Mechanics, ASCE, 122(8), 761-770
Zienkiewicz, O.C., Taylor, R. L. (1989), The Finite Element Method, McGraw - Hill, London, Ⅰ
Zienkiewicz, O.C., Taylor, R. L. (1991), The Finite Element Method, McGraw - Hill, London, Ⅱ
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊