(3.235.245.219) 您好!臺灣時間:2021/05/07 22:14
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:廖彩汝
論文名稱:不同施肥處理對土壤微生物多樣性之探討
論文名稱(外文):Effect of fertilization on soil microbial diversity
指導教授:譚鎮中譚鎮中引用關係
學位類別:碩士
校院名稱:國立中興大學
系所名稱:土壤環境科學系
學門:農業科學學門
學類:農業化學類
論文種類:學術論文
論文出版年:2001
畢業學年度:89
語文別:中文
論文頁數:70
中文關鍵詞:堆肥土壤微生物生物多樣性
相關次數:
  • 被引用被引用:4
  • 點閱點閱:268
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
摘 要
土壤生物多樣性與土壤永續利用有極密切之關係。生物多樣性包含以下互有交集的生物多樣性-分類(taxonomic)多樣性、功能(functional)多樣性及基因(genetic)多樣性。本研究從功能性這方面來探討土壤微生物之多樣性。功能多樣性方面之一是從微生物對碳源代謝的角度,以 Biolog microplates 測試土壤微生物對於不同碳源利用的程度差異,獲得不同的土壤微生物群社對不同碳源代謝的情形。
本研究試驗地為農業委員會農業試驗所試驗所試驗田,屬砂頁岩非石灰性新沖積土,七塊厝系(TCt),自1995年秋做玉米起至2001年春做水稻,已執行了六年的水旱田輪作,設七處理,分別施用豆科綠肥(田菁、埃及三葉草)、廢棄物堆肥(豬糞堆肥)、不易分解之有機質(泥炭)及傳統化肥等。本研究藉由Biolog microplates之方法探討有機肥料與化學肥料的施用對土壤微生物多樣性的影響。
土壤微生物群落在水旱田四個試區中七個不同的處理下的代謝潛能中看出玉米田對碳源的代謝潛能高於水稻田,因旱田在好氣的情況下對碳源的代謝也較為的快且多;而玉米田的土壤微生物群落對碳源利用的數目多且變異小。在相對相似度方面玉米田在四個試區中七個不同的處理下,以堆肥、堆肥配合1/3化學氮肥區、堆肥配合2/3化學氮肥區、綠肥配合1/3化學氮肥區及泥炭配合1/3化學氮肥區這五個處理下的微生物族群的相似度較為相似,且之間的相似度均高達0.9左右;而水稻田以堆肥、堆肥配合1/3化學氮肥區、堆肥配合2/3化學氮肥區及綠肥配合1/3化學氮肥區這四個處理下的微生物族群的相似度較為相似,但水稻田之間的相對相似度值就沒有玉米田的高,且四個試區間的差異頗大。試驗田經由主成分分析後得知土壤微生物群落之間的變異以作物的種類為主要影響因子,次之為水分管理,但分別對水稻田及玉米田而言,施肥處理則為影響之間變異的主要因子。
Effect of Fertilization on Soil Microbial Diversity
Abstract
Soil biodiversity is important to the sustainable utilization of soils. The total biodiversity of an ecosystem includes taxonomic, functional and genetic biodiversities. The purpose of this thesis was to investigate the effect of organic and chemical fertilization on the soil microbial diversity by using Biolg microplate method.
The experimental site was located at Agricultural Research Institute of Council of Agriculture, Taiwan. The test area is a non-calcareous alluvial soil formed from a sandstone and shale. The crop system has being continuously rotated with corn and rice for six years. The treatments included legume green manure, pig waste compost, peat and chemical fertilizer.
The results obtained shows that the metabolic potential on various carbon sources of the microbial community in corn soils was higher than that in paddy rice soils because the aerobic condition in corn soils favored the microorganisms to utilize the carbon sources in Biolog microplate. The number of carbon sources that could be utilized was higher in corn soils than in rice soils. The microbial community in compost, compost + 1/3 (or 2/3) urea (for corn) or ammonium sulfate (for rice), peat or green manure treated soils were relatively similar. The similarity among those were higher than 0.9. However the microbial community in rice soils were less similar than that in corn soils. The statistic analysis shows that the principal components affecting the soil microbial community were crop species and water management. For corn and rice respectively, organic fertilizer was the major factor affecting the structure of soil microbial community.
Key words: Soil, Microbial diversity, Organic fertilizer, Biodiversity.

目 錄
謝誌………………………………………………………………….... Ⅰ
摘要(中文)………………………………………………………… Ⅱ
摘要(英文)…………………………………………………………..Ⅲ
目錄………………………………………………………………….... Ⅳ
表次……………………………………………………………………..Ⅴ
圖次…………………………………………………………………….Ⅵ
附錄…………………………………………………………………….Ⅶ
前言……………………………………………………………………..1
前人研究………………………………………………………………..3
材料與方法……………………………………………………………..13
結果與討論……………………………………………………………..22
一、 土壤微生物族群對碳源之利用情形…………………………22
二、 土壤微生物群落對碳源之代謝潛能…………………………30
三、 微生物群落之相對相似度……………………………………40
四、 影響各樣區微生物群落變異之主成分分析…………………50
結論……………………………………………………………………..58
參考文獻………………………………………………………………..59

表 次
表一、Biolog GN microplate中之碳源……………………………..21
表二、水田與玉米田土壤微生物對碳源之利用數目………………...23
表三、水田採收後土壤微生物對碳源之利用數目…………………..24
表四、水稻收割後土壤微生物無法利用之碳源數目……………….25
表五、玉米田中期土壤微生物無法利用之碳源數目……………….27
表六、玉米採收期土壤微生物無法利用之碳源數目……………….28
表七、水稻田中期土壤微生物無法利用之碳源數目……………….29

圖 次
圖一、田間設計圖………………………………………………………14
圖二、實驗流程示意圖…………………………………………………20
圖三、水稻收割後各小區土壤微生物族群的代謝潛能………………32
圖四、玉米田中期各小樣區土壤微生物族群的代謝潛能……………34
圖五、玉米田收割期各小樣區土壤微生物族群的代謝潛能…………36
圖六、水稻田中期各小區土壤微生物族群的代謝潛能………………38
圖七、水稻收割後土壤微生物群落之相對相似度……………………41
圖八、水稻田中期土壤微生物群落之相對相似度……………………43
圖九、玉米田中期土壤微生物群落之相對相似度……………………46
圖十、玉米採收期土壤微生物群落之相對相似度…………………..48
圖十一、水稻田土壤微生物群落之主成分分析圖…………………..51
圖十二、玉米田土壤微生物群落之主成分分析圖…………………..53
圖十三、水稻田中期與玉米田中期土壤微生物群落
之主成分分析圖………………………………………….54
圖十四、試區土壤微生物群落之主成分分析圖…………………….55

附 錄
附錄一、試區土壤有機質含量與pH值…………………….70

陸、參考文獻
周昌弘。1995。生物多樣性:觀念、假說及研究。科學月刊26(7):547-553。
洪銘杰。1999。關刀溪森林生態系協生性固氮菌對碳源利用之多樣性。國立中興大學土壤環境科學系碩士論文。
拾已宏。2000。關刀溪森林生態系土壤微生物多樣性之探討。國立中興大學土壤環境科學系碩士論文。
張曙明、魏嵒壽。1972。農業微生物學。正中書局。臺北市。
蔡明利。1992。物種歧異度。科學月刊23(3):206-210。
Aelion, C. M. and P. M. Bradley. 1991. Aerobic biodegradation potetial of subsurface microorganisms from a jet fuel-contaminated aquifer. Applied and Environmental Microbiology 57: 57-63.
Amann, R. I., W. Ludwig and K. H. Schleifer. 1995. Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol. Rev. 59: 143-169.
American Society for Microbiology. 1994. Microbial diversity research priorities. American Society for Microbiology, Washington D.C.
Ananyeva. N. D., T. S. Demkina, W. J. Jones, M. L. Cabrera and W. C. Steen. 1999. Microbial biomass in soils of Russia under long-term management practices. Biol. fertile Soils. 29:291-299.
Atlas, R. A. and R. Bartha . 1993. Microbial Ecology : fundamentals and applications. Benjemin / Cumminhan Publishing Inc. Redwood City , California.
Banerjee, M. R., D. L. Burton and S. Depoe. 1997. Impact of sewage sludge application on soil biological characteristics. Agriculture Ecosystem and Environment 66:241-249.
Beare, M. H., D. C. Coleman, D. A. Crossley Jr., P. F. Hendrix and E. P. Odum. 1995. A hierarchical approach to evaluating the significance of soil biodiversity to biogeochemical cycling. In Collins, H. P., G. P. Robertron and M. J. Klug (eds.) The Significance and Regulation of Soil Biodiversity. P. 5-22. Kluwer Academic Publishers, Dordrecht. The Netherlands.
Biolog. 1993. Instructions for use of the Biolog GP and GN microplates. Biolog Inc., Hayward, Calif.
Bossio, D. A. and K. M. Scow. 1995. Impact of carbon and flooding on the metabolic diversity of microbial communities in soils. Appled and Environmental Microbiology 61:4043-4050.
Bouche, M. B. 1977. Strategies lombricinnes. In Lohm, U. and T. Persson (eds.) Soil Organisms as Components of Ecosystems . Biol. Bull. (Stockholm)25:122-132.
Buyer, J. S. and D. D. Kaufman. 1996. Microbial diversity in the rhizosphere of corn grown under conventional and low-input systems. Applied Soil Ecology 5:21-27.
Campbell, C. D., S. J. Grayston, D. J. Hirst. 1997. Use of rhizosphere carbon sources in sole carbon source tests to discriminate soil microbial communities. Journal of Microbiological Methods 30 :33-41.
Campbell, R. 1977. Microbial Ecology. Balckwell Scientiftic Publications, Oxford, England.
Chaturvedi, O. P. and J. S. Singh. 1987. The structure and function of pine forest in central Himalaya. II . Nutrient dynamics. Ann. Bot. 60:253-267.
Christensen, M. 1989 . A view of fungal ecology . Mycologia 81:1-19.
DeLeij, F. A. A. M. and J. M. Whipps. 1993. The use of colony development for the characterization of bacterial communities in soil and on roots. Microb. Ecol. 27:91-97.
Degens, B. P. and J. A. Harris. 1997. Development of a physiological approach to measuring the catabolic diversity of soil microbical communities. Soil Biol. Biochem. 29:1309-1320.
Fredrickson, J. K., D. L. Balkwill, J. M. Zachara, S. M. W. Li, F. J. Brockman and M. A. Simmons. 1991. Physiological diversity and distributions of heterotrophic bacteria in deep cretaceous sediments of the Atlantic coastal plain. Applied and Environmental Microbiology 57:402—411.
Garland, J. L. and A. L. Mills. 1991. Classification and characterization of heterotrophic microbial communities on the basis of patterns of communty-level sole-carbon-source utilization. Applied and Environmental Microbiology 57:2351-2359.
Garland, J. L. 1996a. Analytical approches to the characterization of samples of microbial communities using patterns of potential C source utilization. Soil Biol. Biochem. 28:213-221.
Garland, J. L. 1996b. Patterns of potential C source utilization by rhizosphere communities. Soil Bio. Biochem. 28:223-230.
Garland, J. L. 1997. Analysis and interpretation of community-level physiological profiles in microbial ecology. FEMS Microbiology Ecology 24:289-300.
Glimm, E., H. Heuer, B. Engelen, K. Smalla and H. Backhaus. 1997 . Statistical comparisons of community catabolic profiles. Journal of Microbiological Methods 30: 71-80.
Goodfriend, W. L. 1998. Microbial community patterns of potential substrate utilization:A comparison of salt march, sand dune , and seawater-irrigated agronomic systems. Soil Biol. Biochem. 30 : 1169-1176.Griffiths, B. S., K. Ritz and L. A. Glover. 1996. Broad-scale approaches to determination of soil microbial community structure : application of the community DNA hybridization technique. Microb. Ecol. 31:269-280.
Grundmann, L. G. and F. Gourbiere. 1999. A micro-sampling approach to improve the inventory of bacterial diversity in soil. Applied Soil Ecology 13: 123-126.
Haack, S. K., H. Garchow, M. J. Klug and L. J. Forney. 1995. Analysis of factors affecting the accuracy, reproducibility, and interpretation of microbial communitiy carbon source utilization patterns. Appilied and Environmental Microbiology 61: 1458-1468.
Hackett, C. A. and B. S. Griffiths. 1997. Statistical analysis of the time-course of Biolog substrate utilization. Journal of Microbiological Methods 30:63-69.
Hagvar, S. 1998. The relevance of the Rio-Convention on biodiversity to conserving the biodiversity of soils. Applied Soil Ecology 9:1-7.
Harc, B. D., R. L. Correll, W. Meech, C. A. Kirkby And C. E. Pankhurst. 1997. Using the Gini coefficient with BIOLOG substrate utilisation data to provide an alternative measure for comparing bacterial soil communities. Journal of Microbiological Methods 30:91-101.
Harris, P. J. 1994. Consequences of the spatial distribution of microbial communities in soil. In 50th Purdue. Waste Conference Proceedings. Industrial May 8-10 : 57-64 . West Lafayette, IN.
Heuer, H. and K. Smalla. 1997 . Evaluation of community-level catabolic profiling using Biolog GN microplates to study microbial community changes in potato phyllosphere. Journal of Microbiological Methods 30: 49-61.
Hitzl, W., A. Rangger, S. Sharma, and H. Insam. 1997. Separation power of the 95 substrates of the BIOLOG system determined in various soils. FEMS Microbiology Ecology 22: 167-174.
Hodkinson, I. D. and P. A. Wookey. 1999. Functional ecology of soil organisms in tundra ecosystems: towards the future. Applied Soil Ecology 11: 111-126.
Holben, W. E. and J. M. Tiedje. 1988 . Tracing tiny organisms. Ecology 69 : 561-568.
Hu, S. J. , van A. H. C. Bruggen and N. J. Grunwald 1999. Dynamics of bacterial populations in relation to carbon availability in a residue-amended soil. Applied Soil Ecology 13:21-30.
Insam, H. 1997. Substrate utilization tests in microbial ecology : A preface to the special issue of the Journal of Microbiological Methods. Journal of Microbiological Methods 30:1-2.
Keeney, D. R. and D. W. Nelson.1982. Nitrogen-Inorganic Form. In A. L. Page et al., (eds.) Methods of Soil Analysis, Part 2. Agronomy Monograph 9:643-698. ASA-SSSA, Madison, Wiscosin.
Kennedy, A. C. and V. L. Gewin. 1997. Soil microbial diversity:Present and future considerations. Soil Science. 162:607-617.
Kerkhof, L., M. Santoro, and J. Garland. 2000. Response of soybean rhizosphere communities to human hygiene water addition as determined by community level physiological profiling (CLPP) and terminal restriction fragment length polymorphism (TRFLP) analysis. FEMS Microbiology Letters 184: 95-101
Klopatek, C. C., E. G. O’Neill, D. W. Freckman, C. S. Bledsoe, D. C. Coleman and D. A. Crossly. 1993. The sustainable biosphere initiative: a commentary from the U. S. Soil Ecolog Society, Soil Ecology News Letter.
Korner, J. and E. Laczko. 1992 . A new method for assessing soil microorganisms diversity and evidence of vitamin deficiency in low diversity communities. Biol. Fertil. Soils 13:58-60.
Lee, K. E. 1959. The earthworm fauna of New Zealand . NZDSIR Bull. 130 : 1-486.
Lee, K. E. 1985. Earthworms: Their Ecology and Relationships with Soils and Land Use. Academic Press, Sydney.
Lee, K. E. 1994. The functional significance of biodiversity in soils. Trans. 15 World Cong. Soil Sci. Acapulco, 4a:168-182.
Lee, K. E. and R.C. Foster. 1991. Soil fauna and soil structure. Aust. J. Soil Res. 29:745—775.
Lee, K. E. and C. E. Pankhurst. 1992. Soil organisms and sustainable productivity. Aust. J. Soil Res. 30:855-892.
Leung, K., L. S. England, M. B. Cassidy, J. T. Trevors and S. Weir. 1994. Microbial diversity in soil: effect of releasing genetically engineered micro-organisms. Molecular Ecology 3:413-422.
Lubchenco, J., A. M. Olson, L. R. Brubaker, S. R. Carpenter, M.M. Hubbell, S. A. Levein, J. A. MacMahon, P. A. Matson, J. M. Melillo, H. A. Mooney, C. Hpeterson, H. R. Peterson, H. R. Pulliam, L.A. Real, P. J. Regal and P. G. Risser. 1991 . The sustainable biosphere initiative: an ecological research agenda. Ecology 72:371-412.
Lupwayi, N. Z., W. A. Rice and G. W. Clayton. 1998. Soil microbial diversity and community structure under wheat as influenced by tillage and crop rotation. Soil. Biol. Biochem. 30:1733-1741.
Margalef, R. 1958 . Information theory in ecology. Gen. Syst. 3:36-71.
McLean, E. O. 1982. Soil pH and lime requirement. In A. L. Page et al., (eds.) Methods of Soil Analysis, Part 2. Agronomy Monograph 9 : 199-224. ASA-SSSA Madison,Wiscosin.
Metting, B. F. 1993 . Soil Microbial Ecology. Marcel Dekker. Inc., New York.
Miller, H., J. G. Henken and J. A. Van Veen. 1989. Variations and compositions of bacterial populations in the rhizosphere of maize, wheat. and grass cultivars. Can. J. Microbial. 35:656-660.
Neal, J. L., R. I. Larson, and T. G. Atkinson. 1973. Changes in rhizosphere populations of selected physiological groups of bacterial related to substration of specific pairs of chromosomes in spring wheat. Plant and Soil 39: 209-212.
Nelson, D. W. and L. E. Sommers. 1982. Total carbon, organic carbon and organic matter. In A. L. Page et al., (eds.) Methods of Soil Analysis, Part 2. Agronomy Monograph 9: 539-579. ASA-SSSA, Madisom, Wisconsin.
Olsen, S. R. and L. E. Sommers. 1982. Phosphorus. In A.L. Page et al. (ed.) Methods of soil analysis, Part 2. 2nd edition. Agronomy Monograph 9:403-430. ASA-SSSA, Madsion, Wisconsin.
Peacock, A. D., M.D. Mullen, D. B. Ringelberg, D. D. Tyler, P.M. Hedrick and D.C. White 2001. soil microbial community responses to dairy manure or ammonium nitrate applications. Soil Bio. Biochem. 33:1011-1019.
Reichardt, W. , A. Briones , R. de Jesus, and B. Padre. 2001. Microbial population shifts in experimental rice systems. Applied Soil Ecology 17:151-163.
Rhoades, J. D. 1982. Cation exchange capacity. In A. L. Page et al., (eds.) Methods of Soil Analysis, Part 2. Agronomy Monograph9: 149-157. ASA-SSSA, Madisom,Wisconsin.
Ricklefs, R. E. and D. S. Schluter. 1993. Species diversity in ecological communities: historical and geopraphical perspectives. The University of Chicago Press , Chicago.
Rovira, A. D. 1965. Plant root exudates and their influence upon soil microorganisms. In K. F. Baker and W. C. Snyder (eds.). Ecology of Soil Borne Pathogens — Prelude to Biological Control. p.170-186. University of California Press. Berkly.
Ruiter, P. C. de., A. Neutel, and J. C. Moore. 1998. Biodiversity in soil ecosystems: the role of energy flow and community stability. Applied Soil Ecology 10: 217-228.
Schnitzer, M. 1991. Soil organic matter-the next 75 years. Soil Science. 151:41-58.
Setala, H., V. G. Marshall, and J. A. Trofymow. 1995. Influence of micro- and macro-habitat factors on collembolan communities in Douglas-fir stumps during forest succession. Applied Soil Ecology 2: 227-242.
Shannon, C. E. and W. Weaver. 1949. The mathematical theory communication. University Illinois Press, Urbana, IL.
Sinsabaugh, R., L. Klug, H. P. Collins, P. E. Yeager and S. O. Petersen. 1999. Characterizing soil microbial communities. In G. P. Robertson et al., (eds) .Standard Soil Methods for Long-Term Ecological Research. Oxford Universily Press. Oxford New York.
Siepel, H. and E. de Ruiter-Dijlkman. 1993. Feeding guilds of oribatid mites based on their carbohydrase activities. Soil Biol. Biochem. 25:1491-1497.
Simpson, E. H. 1949. Measurement of diversity. Nature 163: 688.
Simek. M.,D.W. Hopkins, J. Kalcik, T. Picek, H. Santruckova, J. Stana and K. Travnik. 1999. Biological and chemical properties of arable soils affected by long-term organic and inorganic fertilizer applications. Biol Fertil Soils 29:300-308.
Solbrig, O. T. 1991. From genes to ecosystems : a research agenda for biodiversity. Report of a IUBS-SCOPE-UNESCO workshop. The International Union of Biological Scinces. 51 Boulevard de Montmorency , Paris , France.
Thompson, I. P., M. J. Bailey, R. J. Ellis, N. Maguire, and A. A. Meharg. 1999. Response of soil microbial communities to single and multiple doses of an organic pollutant. Soil Biol. Biochem 31:95-105.
Torsvik, V., K. Salte, R. Sorheim and J. Goksoyr. 1990. Comparison of phenotypic diversity and DNA heterogeneity in a population of soil bacteria. Applied and Environmental Microbiology 56:776—781.
Waid, J. S. 1999. Does soil biodiversity depend upon metabiotic activity and influences? Applied Soil Ecology 13: 151-158.
Wall, D.H. and R. A. Virginia. 1999. Controls on soil biodiversity: insights from extreme environments. Applied Soil Ecology 13: 137-150.
Wunsche, L., L. Bruggemann and W. Babel. 1995. Determination of substrate utilization patterns of soil microbial communities : an approach to assess population changes after hydrocarbon pollution. FEMS Microbiol. Ecol. 17: 295-306.
Zak, J. C., M. R. Willig, D. L. Moorhead and H. G. Wildman. 1994. Functional diversity of microbial communities: a quantitative approach. Soil Biol. Biochem. 26:1101—1108.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔