(3.92.96.236) 您好!臺灣時間:2021/05/07 01:19
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

: 
twitterline
研究生:黃國軍
研究生(外文):Guo-Jun Huang
論文名稱:鎘在土壤與腐植質中吸附反應
論文名稱(外文):Kinetic Simulation of Sorption of Cadmium
指導教授:林正
指導教授(外文):Chenfang Lin
學位類別:碩士
校院名稱:國立中興大學
系所名稱:土壤環境科學系
學門:農業科學學門
學類:農業化學類
論文種類:學術論文
論文出版年:2001
畢業學年度:89
語文別:中文
論文頁數:61
中文關鍵詞:動力學
外文關鍵詞:cadmiumkinetic
相關次數:
  • 被引用被引用:3
  • 點閱點閱:586
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:42
  • 收藏至我的研究室書目清單書目收藏:0
重金屬在土壤環境中之反應是許多學者研究之重點。根據文獻研究指出腐植酸能廣泛影響重金屬離子在土壤中之行為,可能使得重金屬移動性降低,亦可能促進重金屬的活性。
本研究基於楊、劉所研究發展,引用相同模式探討另一重金屬鎘在土壤中吸附反應現象,了解土壤環境中鎘、腐植酸、土壤礦物三者間交互作用之潛在變化,且模擬重金屬鎘的吸附與釋出之現象。並進一步與前者建立之銅之反應模式進行比對,以了解重金屬在各種狀況下模式之相互特性;以及此模式延用於不同重金屬之適用性。以企求建立一個通用的反應動力學模式。
研究工作分為,引用文獻數據利用電腦進行模擬,驗證模式之正確性,以及比對重金屬銅與鎘動力學吸附模式參數之關係。研究模擬重金屬鎘與高嶺土之反應、重金屬鎘與針鐵礦(Goethite)之反應。模擬系統參數之設定參考銅之動力學模式之參數設定,改變反應速率常數值來模擬重金屬吸附量隨時間之變化。結果顯示在pH 5 ~ 9之間的六個實驗值與模擬值有較好的模擬,其相關性達統計上之顯著水準。在模擬重金屬鎘與腐植酸反應部分以反應速率常數來模擬,pH 5.0時吸附動力學過程,所得結果亦可以得到顯著相關性。
綜合腐植酸對無機土壤礦物在吸附Cd的影響,本研究呈現腐植酸之解離會受pH影響。對鎘之吸附亦會隨腐植酸增加而增加且影響其吸附與釋出,因此在酸性土壤中鎘對重金屬之吸附扮演一重要角色。
The reaction of how heavy metal in the soil environment was the key issue that most of the scholar been research recently. On the basis of research, humic acid could affect on the action of metal iron in the soil. It would slow the movement of the heavy metal and also promote the activity.
This research was based on Yang and Liu''s previous result that by applying the same model to probe into the sorption of cadmium in the soil. It helped us to understand the reactions between cadmium﹐humic acid and soil mineral and simulation of adsorption and liberation of cadmium. Furthermore, by comparing with the copper model to find out how heavy metal reacted one to the other in different kind of situation. This standard could be further used in different heavy metal and finally build out an interchangeable kinetic sorption model.
The study included fit the literature data by computer simulation and verify the model, then compare the model parameters of copper and cadmium. We used the model to simulate the reaction of cadmium with kaolinite and goethite. The model parameters referred the kinetic model parameters of copper; we change the reaction rate constants to simulate the changes of substrates absorbed cadmium with time. The simulation of the model had good correlation of experiment and simulation at pH 5, 6, 7, 8 and 9. In the system of humic acid, the model to simulate the reaction process at pH 5 had remarkable correlation in statistics.
The study found pH could influence the dissociation of the humic acid and the changes in humic acid solubility will influence the absorption and liberation of cadmium. Humic acid played an important role in the sorption reaction system of heavy metals.
謝誌……………………………………………………………………….i
中文摘要…………………………………………………………...…….ii
英文摘要……………………………………………………….………..iv
目錄……………………………………………………..……………….vi
圖次…………………………………………….………………..……..viii
表次………………………………………………………………...……ix
一. 前言………………………………………………………………..1
二. 文獻研究…………………………………………………………..4
(一) 重金屬鎘及腐植酸之基本化學性質…………………..…….4
(二) 影響土壤重金屬吸附反應的因子……………………..5
(三) 重金屬吸附反應模式的建立…………………………10
三. 模式理論…………………………………………………………14
四. 研究方法與步驟…………………………………………………22
(一) 重金屬在土壤中之動力學吸附模式………………………...22
(二) 重金屬銅與鎘之比較……………………………...…………25
(三) 模式參數……………………………………………………...26
(四) 文獻模擬參數設定…………………………………..……….28
五. 結果與討論………………………………………………..……..40
(一) 模式模擬之結果與分析……………………………….……..40
(二) 重金屬鎘之動力學模式之參數建立…………...……………51
六. 結論………………………………………..……………………..53
七. 參考文獻…………………………………………………...…….54
附錄……………………………………………………………………..60
林正、陳琦玲. 1985. 估算含重金屬污泥土地處置量的一個新方向。第十屆廢水處理技術研討會論文集pp. 405-416。
黃俊嘉. 1995. 三種有機堆肥腐植質之特性及其與鉛、銅、鎘及鋅之反應。國立中興大學土壤環境科學研究所碩士論文。
楊淑佩. 1999. 土壤與腐植酸吸附銅之動力學模擬。國立中興大學土壤環境科學系研究所碩士論文。
劉怡玲. 2000.腐植酸影響銅與高嶺土反應之探討。國立中興大學土壤環境科學系研究所碩士論文。
劉滄棽. 1995. 非線性反應系統之參數鑑定研究。國立中興大學土壤環境科學系研究所博士論文。
Abd-elfattah, A., and K. Wada. 1981. Adsorption of Pd, Cu, Zn, Co and Cd by soils that differ in cation-exchange materials. J. Soil Sci. 32: 271-283.
Aiken, G.R. 1985. Isolation and concentration teachniques for aquatic humic substances. P. 363-385. In G. R. Aiken et al. (ed.) Humic substances in soil, sediment, and water. JoHn Wiley & Sons, New York.
Aleksandrov, I.V., G.I. Kandelaki, and I.P. Kulikova. 1994. Zeolite-humic sorbents for wastewater cleaning. Khimiya Tverdogo Topliva. 45: 136-141.
Backes, C.A., R.G. McLaren, A.W. Rate, and R.S. Swift. 1995. Kinetics of cadmium and cobalt desorption from iron and manganese oxides. Soil Sci. Soc. Am. J. 59:778-785.
Cavallaro, N., and M.B. McBride. 1978. Copper and cadmium adsorption characteristics of selected acid and calcareous soils. Soil Sci. Soc. Am. J. 42: 550-556.
Elliott, H.A., M.R. Liberati, and C.P. Huang. 1986. Competitive adsorption of heavy metals by sols. J. Environ. Qual. 15: 214-219.
Hayes, K.F., and S.J. Traina. 1998. In P.M. Huang (ed.) Soil chemistry and ecosystem health. Soil Sci. Soc. Am. Spec. Publ. No. 52, Soil Sci. Soc. Am., Madison WI.
John, M.J. 1972. Cadmium adsorption maxima of soils as measurd by the Langmuir isotherm. Can. J. Soil Sci. 52: 343-350.
Kerndorff, H., and M. Schnitzer. 1980. Sorption of metals on humic acid. Geochim. Cosmochim. Acta 44: 1701-1708.
Korte, N.E., J. Skopp, W.H. Fuller, E.E. Niebla, and B.A. Alesii. 1976. Trace element movement in soils : Influence of soil physical and Chemical Properties. Soil Sci. 122: 350-358.
Levi-Minzi, R., G.F. Soldatini, and R. Riffaldi. 1976. Cadmium adsorption by soil. J. Soil Sci. 27: 10-15.
Lin, Chenfang., W.J. Busscher, and L.A. Douglas. 1983a. Multifactor kinetics of phosphate reactions with minerals in acdic soils. I. Modeling and simulation. Soil Sci. Soc. Am. J. 47:1097-1103.
Ma, L.Q., and G.N. Rao. 1997. Chemical fractionation of Cadmium, Copper, Nickel, and Zinc in contaminated soils. J. Environ. Qual. 26:259-264.
Ma, Y.B., and J.F. Liu. 1997. Adsorption kinetics of zinc in a calcareous soil as affected by pH and temperature. Commun. Soil Sci. Plant Anal. 28:1117-1126.
Marcelo, J.A., and L.K. Koopal. 1998. Desorption of humic acid from an iron oxide surface. Environ. Sci. Technol. 32: 2572-2577.
McBirde, M.B. 1994. Environmental chemistry of soils. Oxford Univ. Press, New York.
McBride, M., S. Sauve, and W. Hendershot. 1997. Solubility control of Cu, Zn, Cd and Pb in contaminated soils. European Journal of Soil Science. 48, 337-346.
McLaren, Ronald G, Clare A. Backes, Andrew W. Roate, and Roger S. Swift. 1995. Kinetics of cadmium and cobalt desorption from iron and manganese oxides. Soil Sci. Soc. Am. J. 59: 778-785.
Mohamed, M.H., and H. Salwa.1998. Cadmium and zinc in acid tropical soils :Ⅱ. Influence of humic acid addition on soil properties and their adsorption. Commun. Soil Sci. Plant Anal. 29: 1933-1948.
Rashid, M. A. 1971. Role of humic acids of marine origin and their different molecular weight fractions in complexing di- and tri-valent metals. Soil Sci. 111:298-305.
Puls, R.W., R.M. Powell, D. Clark, and C.J. Eldred. 1991. Effects of pH, solid/solution ratio, ionic strength, and organic acids on Pb and Cd sorption on Kaolinite. Water Air Soil Pollut. 57-58: 423-430.
Salam, A.K., and P.A. Helmke. 1998. The pH dependence of free ionic activities and total dissolved concentrations of copper and cadmium in soil solution. Geoderma. 83: 281-291.
Schulthess, C. P. and C. P. Huang. 1991. Humic and Fulvic acid adsorption by silicon and aluminum oxide surfaces on clay minerals. Soil Sci. Soc. Am. J. 55:34-42.
Senesi, N. 1992. Metal-humic substance complexes in the environment. Moelcular and mechanistic aspects by multiple spectroscopic approaches. p. 429-496. In D. C. Adriano (ed.) Biogeochemistry of trace metals. Lewis Publ., Ann Arbor, MI.
Sims, J.L., and W.H. Patrick, Jr. 1978. The distribution of micronutrient cations in soil under condition of varying redox potential and pH. Soil Sci. Soc. Am. J. 42:258-262.
Spark, K.M., J.D. Wells, and B.B. Johnson. 1995. Characterizing trace metal adsorption on kaolinite. Eur. J. Soil Sci. 46: 633-640.
Spark, K.M., J.D. Wells, and B.B. Johnson. 1997a. The interaction of humic acid with heavy metals. Aust. J. Soil Res. 35: 89-101.
Spark, K. M., J. D. Wells, and B. B. Johnson. 1997b. Characteristics of the sorption of humic acid by soil minerals. Aust. J. of Soil Res.. 35: 103-112.
Stevenson, F.J. 1982. Humus chemistry : genesis, composition, reactions. John Wiley & Sons, New York.
Tate, K.R., and B.K.G. Theng. 1980. Organic matter and its interactions with inorganic soil constituents. P. 225-249. In B.K.G. Theng (ed.) Soil with variable charge. N.Z. Soc. Soil Sci., Soil Bureau, Dept. Soil. Sci. and Ind. Res., Lower hutt.
Travis, C.C., and E.L. Etnier. 1981. A survey of sorption relationships for reaction solutes in soils. J. Environ. Qual. 10: 8-17.
Yu, Y.S., G.W. Bailey, and X.C. Jin. 1996. Application of a lumped, nonlinear kinetics model to metal sorption on humic substances. J. Environ. Qual. 25: 552-561.
Yuan, G., and L.M. Lavkulich. 1997. Sorption behavior of copper, zinc, and cadmium in response to simulated changes in soil properties. Commun. Soil Sci Plant Anal. 28:571-587. 1982
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔