(3.236.222.124) 您好!臺灣時間:2021/05/13 20:50
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:張俊誠
研究生(外文):Chuang chun cheng
論文名稱:sPS與PS-PEP混摻系統中高分子結晶與微觀相分離趨動力之競爭與互動
論文名稱(外文):Competition between Crystallization and Microphase Separation of sPS/PS-PEP Blends
指導教授:何榮銘
指導教授(外文):Ho Rong Ming
學位類別:碩士
校院名稱:國立中興大學
系所名稱:化學工程學系
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2001
畢業學年度:89
語文別:中文
論文頁數:104
中文關鍵詞:高分子結晶與微觀相分離物理侷限三維限制微胞形態
外文關鍵詞:Competitionphysics confinedconfinedMicelle
相關次數:
  • 被引用被引用:0
  • 點閱點閱:104
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
摘要
本實驗主要目的在探討高分子結晶的自我有序行為與團聯共聚合物微觀相分離現象兩者間驅動力之競爭與互動。經由熔融摻合的方式,將結晶性材料對排聚苯乙烯(syndiotactic Polystyrene,sPS)與具有微觀相分離結構之苯乙烯團聯共聚合物(styrenic block copolymer)摻合,由於自我排組(self-assembly)的過程形成微觀相分離形態為微胞(micelle)結構之自我有序微結構(microstructure),其微胞結構的大小隨混摻系統的sPS均聚合物之添加量增加而變大,在30%sPS+70%PS-PEP混摻系統中其每個微胞的平均大小約為50nm,由穿透式電子顯微鏡之形態觀察與各不同比例混摻系統之玻璃轉化溫度的變化,證實混摻系統中sPS均聚合物被PS-PEP團聯共聚合物包覆在內形成微胞結構且多數sPS分子鏈在微胞結構中以局部偏析(localization)的情形存在,由於sPS均聚合物與PS-PEP團聯共聚合物間並無化學鍵鍵結的因素存在,所以此混摻系統中sPS的結晶行為乃受限於所謂的物理侷限(physically confinement)。相對於利用具結晶性團聯之共聚合物的化學鍵結方法而自我排組及自我有序形成一微觀相分離系統來探討結晶於侷限空間中之發展與熔融行為即所謂的化學侷限(chemical confinement)將有所不同 。由於希望將影響結晶行為之變數簡單化所以在探討結晶性高分子鏈於此微觀受限環境中結晶與熔融行為時,選擇物理侷限系統之受限環境將可排除結晶性共聚合物的鏈端化學鍵鍵結影響的因素。一般而言,探討侷限下結晶行為發展的文獻,其所使用的侷限空間大部分屬於一維或二維的侷限系統(如層板結構與圓柱結構),但本實驗所設計的侷限空間屬於三維侷限的微胞結構,與一維與二維的侷限系統比較更能明確的顯現侷限空間對結晶行為的影響。本實驗即針對所選取的sPS/PS-PEP摻合系統來觀察結晶與微觀相分離兩者間驅動力的競爭與互動情形,並探討在侷限空間下結晶熔融行為與結晶形成之結構的變化。實驗結果發現sPS均聚合物處於一軟的環境之下(亦即等溫結晶溫度大於PS團聯之玻璃轉化溫度,Tc > Tg PS-block)結晶之驅動力足以克服團聯共聚合物之自我排組的驅動力,進而破壞微觀相分離的結構。藉由觀察結晶在微胞結構中發展的行為得知,在結晶進行成長時會以濃度聚集的方式達成微胞間的貫連再進行結晶的成長,但成核行為則不受影響,其原因在於平均間距50nm的微胞結構所形成的侷限空間已提供足夠的分子鏈來進行擾動並克服成核所需要的能障。熔融行為的分析顯示,混摻系統的熔點均高出sPS均聚合物的熔點約5 ℃左右,在觀察結晶行為的發展後,混摻後熔點上升之情形主要受結晶排列時折疊面能量大小之影響,sPS結晶性分子鏈於微胞結構中以單一方向進行結晶之成長排列,受到侷限空間之影響,分子鏈以較規則的方式進行折疊,形成較規則的折疊表面,換言之具有較低的表面自由能,導致結晶層板具有較高的熔點。再則實驗發現混摻系統中sPS的結晶速率隨混摻sPS均聚合物的添加量而增加,推論造成不同混摻系統在結晶速率上的差異主要受制於跨越兩相鄰微胞間距離之大小,15wt%sPS混摻系統在結晶成長時所需跨越之距離較大所以能障高進行結晶的成長速率慢,相反的50wt%sPS混摻差系統所需跨越的間距小能障低,所以結晶時間短。對於sPS的多晶結構的分析發現在混摻系統中結晶結構均以β結晶結構存在,相較於sPS均聚合物在相同的熱處理條件下,以α與β結晶結構共存的形態有明顯的不同。這顯示侷限之空間確實會影響sPS均聚合物之多晶結構。綜觀上述的結果,高分子的結晶行為在侷限之空間中確實會受到空間的影響而發生變化。

Abstract
The competition between the crystallization of crystalline polymer, syndiotactic polystyrene (sPS), and the microphase separation of block copolymer, polystyrene-b-poly(ethylenepropylene) (PS-PEP), was investigated in this study. After the melt mixing of sPS and PS-PEP, a micelle morphology was obtained. For sPS/PS-PEP blends containing 30 wt % sPS, the micelle size is approximately 50 nanometers. The size of micelles increases with increasing the added amount of sPS. The formation of micellization is attributed to the broadening of molecular weight distribution of sPS. The results of compatibility were studied in terms of differential scanning calorimetry (DSC). No significant change on the glass transition temperature (Tg) of sPS in the blends was determined. This suggests that the majority of sPS component should be localized in the core of the observed micelle. The unique morphological texture gives a specific confined environment for sPS crystallization where the crystalline sPS is three-dimensionally restricted by the microdomains of PS-PEP. Contrary to typical microphase-separation of crystallizable block copolymers (designated as chemically confined environment for crystallizing blocks) where the constituted blocks are chemically connected by copolymerization, we named the micelle structure as physically confined environment for sPS crystallization. The crystallization studies of sPS in the self-assembly system of sPS/PS-PEP blends thus provide a representative example to explore the crystallization behavior within the nanometer-scaled confinement without the effects of chemical linkages. Surprisingly, the crystallization of sPS drives the sPS chains to penetrate the surrounding PS and PEP microdomains, and forms crystalline lamellae. It reflects that the ability of crystallization could overcome the ability of microphase separatrion of block copolymer. Owing to the confined environment is around 50nm, the confinement for sPS crystallization has less effect in nucleation process but gives significant impact in growth process. Consequently, the crystallization rate of sPS was found to increase with increasing the added amount of sPS. A new term of energy barrier for secondary nucleation, Gcross, originated from the isolation of PEP microdomains for sPS crystallization was proposed. The increasing of crystallization rate is attributed to the reduction of the Gcross. Furthermore, the melting temperature of sPS crystals in sPS/PS-PEP system was found to be higher than pure sPS. We speculate that the unexpected increase in melting point is attributed to the confined effect where the confinement could induce regular folding for sPS lamellar crystals, and thus decrease the free energy of folding surface. The confinement also affects the formation of sPS polymorphism. The crystallization of sPS under confined environment lead to the growth of sPS crystals having higher metastability (i.e.,  phase) as compared to the formation of neat sPS polymorphism (i.e.,  and phases).

目錄
中文摘要…………………………………………………………………I
英文摘要………………………………………………………………..IV
目錄……………………………………………………………………...V
圖目錄………………………………………………………………....VIII
附錄…………………………………………………………………….XIV
第一章 緒論………………………………………………….……….1
第二章 簡介………………………………………………………..4
2.1高分子團聯共聚合物之相分離行為…………………………………4
2.2 高分子團聯共聚合物/均聚合物摻合系統之形態變化……………5
2.3 溶解限制(solubility limit)………………………………8
2.4結晶環境與結晶溫度之相關性……………….……………………10
2.5結晶成核與成長之機制………………………………….…………11
2.5.1一級成核理論………………………………...……..13
2.5.2二級成核理論……………………………………….15
2.5.3均相成核(homogeneous nucleation) 和異相成核….16
(heterogeneous nucleation)
2.6物理侷限與化學侷限系統之界定……………………………..17
2.7對排聚苯乙烯之多晶結構探討與控制條件…………………..18
第三章 實驗方法及試片製備………………………………………37
3.1 實驗材料…………………………………………………….37
3.2 實驗儀器……………………………………………………..37
3.3 試片製備及實驗方法……………………………….………38
3.3.1試片製備方式…………………………………….…38
3.3.2 MiniMax熔融混摻……………………….………….38
3.3.3微差掃瞄式熱卡(DSC)…………………….…….39
3.3.3-1 玻璃轉化溫度(Tg)之測量法….…….39
3.3.4傅立葉轉換紅外線光譜儀(FTIR)…………….……41
3.3.5穿透式電子顯微鏡(TEM)…………………..…42
3.3.6小角X光散射儀(SAXS)和廣角X光繞射儀(WAXD)...43
第四章 結果與討論………………………………………….……..50
4.1 SPS/PS-PEP 混摻系統自我排組態…………………..50
4.1.1 PS-PEP團聯共聚合物的微觀結構…………………….51
4.1.2 sPS/PS-PEP混摻系統之形態觀察………………….. 52
4.1.3 微胞結構形成之因素………………………………….55
4.1.4 sPS的局部偏析(localization)與互溶
(solubilization)…………………………………………56
4.2 侷限環境下的結晶行為觀察與結晶機制探討………...…….59
4.2.1微胞形態中結晶行為的形態觀察……………...……61
4.2.2微胞形態中結晶行為機制的探討…………………..64
4.2.3不同混摻組成之結晶時間比較……………………..67
4.3 侷限空間下恆溫結晶之熱性質分析…………...………….68
4.3.1侷限空間下sPS結晶之熔融行為………………….6
4.4 侷限環境對sPS多晶結構的影響…………71
4.4.1侷限空間對sPS多晶結構的影響…………………72
第五章 結論…………………………………………………….…105
第六章 參考文獻………………………………………….……....107

參考文獻
1. Pochan, D. J.; Gido, S. P.; Pispas, S.; Mays, J. W., Ryan,
A. J.; Fairclough, J. P. A. et al. Macromolecules 1996, 29,
5091.
2. Ryan, A. J. and Hamley, I. W. Morphology of block
copolymers. In The physics of glassy polymers, (ed. R. N.
Haward and R. J. Young). Chapman and Hall, London. 1997.
3. Khandpur, A. K.; Forster, S.; Bates, F. S., Hamley, I. W.;
Ryan, A. J.; Bras, W. et al. Macromolecules 1995, 28, 8796.
4. Forster, S.; Khandpur, A. K.; Zhao, J.; Bates, F. S.;
Hamley, I. W.; Ryan, A. J. et al. Macromolecules 1994, 27,
6922.
5. Adedeli, A. ; Ho, R. M.; Giles, D. W.; Hajduk, D. A.;
Macosko, C. W.;Bates, F. S. Journal of Polymer Science:Patr
B: Polymer Physics 1997,35, 2857.
6. Kinning, D. J.;Thomas, E. L.;Fetter, L. J. Journal of
chemical Physics,1989,90, 5806.
7.Mani, S.; Weiss, R. A.; William, C. E.; Hahn, S. F.
Macromolecules,1999, 32, 3663.
8.Winey, K. I. Macromolecules, 1992, 25, 2645.
9.Disko, M. M.; Liang, K. S.; Behal, S. K. Macromolecules,
1993, 26,2983.
10.Spontak, R. J.; Smith, S. D.; Ashraf, A. Macromolecules,
1993, 26,956.
11. Spontak, R. J.; Smith, S. D.; Ashraf, A. Macromolecules,
1993, 26,5118.
12.Russell, T. P.; Mayes, M. Macromolecules, 1992, 25,
6523.
13.Hashimoto, T.; Hasegawa, H.; Koizumi, S.
Macromolecules,1994, 27,7893.
14. Hashimoto, T.; Hasegawa, H.; Koizumi, S.
Macromolecules,1992, 25,1433.
15.Veenstra, H.; Lent, B. J. V.; Dam, J. V.; Boer, A. P. D.
Polymer, 1999,40, 6661.
16.Hudson, S. D.; Jeon, H. G,; Ishida, H. Macromolecules, 1999,
32,1803.
17.Cohen, R. E.; Cheng, P. L.; Douzinas, K.; Kofinas, P.;
Berney, C. V.Macromoleculer, 1990, 23, 324.
18. Matsen, M. W. Macromolecules, 1995, 28, 5765.
19. Hashimoto, T.; Kimishima, K.; Jinnai, H. Macromolecules
1999, 32,2585.
20. Hashimoto, T,; Kimishima, K. Macromolecules 1995, 28,
3842.
21.Olly, R. H.; Shabana, H. M.; Bassett, D. C.; Jungnickel,
B. —J.Polymer, 2000, 41, 5513.
22. Jeon, K. J.; Roe, R. J. Macromolecules, 1994, 27, 2439.
23. Hashimoto, T.; Tanaka, H.; Hasegawa, H. Macromolecules,
1990, 23,4378.
24. Hashimoto, T.; Tanaka, H.; Hasegawa, H. Macromolecules,
1991, 24, 240.
25. Mai, S. M.; Fairclough, J. P. A.; Viras, K.; Gorry, P. A.;
Hamley, I. W.; Ryna, A. J.; Booth, C. Macromolecules, 1997,
30, 8392.
26. Register, R. A.; Rangarajan, P.; Fetters, J. L.; Adamson,
D. H.; Bras,W.; Ryna, A. J.; Naylor, Steven. Macromolecules,
1995, 28,1422.
27. Donth, E.; Beyer, D.; Unger, R. Polymer, 1991, 32, 3305. 28.Matsushita, Y.; Torikai, N.; Mogi, Y.; Noda, I.
Macromolecules, 1994,27, 4566.
29. Gallot, B.; Gervais, M. Polymer, 1981, 22, 1129.
30.DiMarzio, E. A.; Guttman, C. M.; Hoffman, J. D.
Macromloecules,1980, 13, 1194.
31.Akiyama, S.; Kobori, Y.; Ishikawa, K. European Polymer
Journal,2000, 36, 503.
32.Hamley, I. W.; Ryan, A. J.; Bras, W.; Bates, F. S.
Macromolecules,1995, 28, 3860.
33. Ashida, T.; Yamamoto, S.; Nojima, S. Polymer Journal, 1995,
27, 673.
34. Andrew, J.; Lovinger, B. J.; Han, F. L.; Peter,
A. M. J.Polym. Sci.,Polym. Phys., 1993, 31, 115.
35. Nojima, S.; Kato, K.; Yamamoto, S.; Ashids, T.
Macromolecules,1992, 25, 2237.
36.Richards, R. W.; Richardson, P. H.; Blundell, D. J.;
MacDonald, W. A.;Mills, P. Polymer,1995, 36, 3059.
37.Liu, L.; Jiang, B.; Zhou, E. Polymer,1996, 37, 3937.
38.Nojima, S.; Tanaka, H.; Rohadi, A.; Sasaki, S. Polymer,
1998, 39,1727.
39.Chu, B.; Inomata, K.; Liu, L. Z.; Nose, T. Macromolecules
1999, 32,1554.
40. Liu, L. Z.; Yeh, F.; Chu, B. Macromolecules, 1996, 29,
5336.
41. MacKnight, J.; Sakurai, K.; Lohse, D. J.; Schulz, D. N.;
Sissano, J. A.Macromolecules, 1994, 27, 4941.
42. MacKnight, J.; Sakurai, K.; Lohse, D. J.; Schulz, D. N.;
Sissano, J.A.; Lin, J. S.; Agamalyan, M. Polymer,1996, 37,
4443.
43. Seki, M.; Nakano, H.; Yamauchi, S. Macromolecules 1999, 32,
3227.
44.Attwood, D.; Pannu, R. K.; Collett, J. H.; Tanodekaew, S.;
Booth, C.Biomaterials, 1999, 20, 1381.
45. D'Orazio, L.; Mancarella, C.; Martuscelli, E.; Cecchin, G.,
Corrieri,R.Polymer, 1992, 40, 2745.
46.Whitmore, M. D. Macromolecules, 1988, 21, 1482.
47. Ho, R. H.; Lin, C. P.; Tsai, H. Y.; Woo, E. M.
Macromolecules, 2000,33, 6517.
48. Guerra, G.; Vitagliano, V. M.; De Rosa, C.; Petraccone, V.;
Corradini,P. Macromolecules 1990, 23, 1539.
49. De Rosa, C.; Guerra, G.; Petraccone, V.; Corradini, P.
Polym. J. 1991, 23, 1435.
50. De Rosa, C.; Rapacciuolo, M.; Guerra, G.; Petraccone, V.;
Corradini,P. Polymer 1992, 33, 1423.
51. Auriemma, F.; Petraccone, V.; Dal Poggetto, F.; De Rosa,
C.; Guerra,G.; Manfredi, C.; Corradini, P. Macromolecules
1993, 26, 3772.
52. De Rosa, C. Macromolecules 1996, 29, 8460.
53. Guerra, G.; De Rosa, C.; Vitagliano, V. M.; Petraccone, V.;
Corradini,P. J. Polym. Sci. Part B: Polym. Phys. 1991, 29,
265.
54. Reynolds, N. M.; Savage, J. D.; Hsu, S. L. Macromolecules
1989, 22, 2867.
55. Kobayashi, M.; Nakaoki, T.; Ishihara, N. Macromolecules
1990, 23,78.
56. Vittora, V. Polym. Commun. 1990, 31, 263.
57. Reynolds, N. M.; Hsu, S. L. Macromolecules 1990, 23, 3463.
58. Reynolds, N. M.; Stidham, H. D.; Hsu, S. L. Macromolecules
1991, 24, 3662.
59. Rastogi, S.; Gupta, V. D. J. Macromol. Sci. Phys. 1994,
B33,129.
60. Musto, P.; Tavone, S. ; Guerra, G.; De Rosa, C. J. Polym
Sci B: Polym Phys 1997, 35, 1055.
61. Jungnickel, B. J.; Li, Y.; Stein, M. Colloid. Polym. Sci.,
1991, 269, 772.
62. Kinning, D. J.; Winey, K. I.; Thomas, E. L. Macromolecules,
1988, 21,3502.
63. Hlavata, D.; Stejiskal, J.; Plestil, J.; Konak, C.;
Kratochvil, P. Polymer, 1996, 37, 799.
64. Katime, I.; Quintana, J. R.; Janez, M. D. Polymer, 1998,
39, 2111.
65. Han, C. D.; Hashimoto, T.; Vaidya, N. Y.; Kim, D.;
Sakamoto, N. Macromolecules, 2001, 34, 222.
66. Han, C. D.; Hishimoto, T.; Vaidya, N. Y.; Shin, G.;
Yamaguchi, D. Macromolecules, 2000, 33, 3767.
67.Bonnet, M.; Buhk, M.; Trogner, G.; Rogausch, K. D.;
Petermann, J. Acta Polymer, 1998, 49, 174.
68.Woo, E. M.; Wu, F. S. Macromol. Chem. Phys, 1998, 199, 2041.
69.Woo, E. M.; Sun, Y. S. Macromolecules, 1999, 32, 7836.
70.Won, H. J.; Jungahn, K.; Hong, B. K. Polymer, 1998, 39,
3753.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔