(3.238.173.209) 您好!臺灣時間:2021/05/15 17:27
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

: 
twitterline
研究生:林一峰
論文名稱:酸鹼敏感型聚葡萄糖水膠:丙烯酸對水膠製備與膨潤性質影響
指導教授:邱信程
學位類別:碩士
校院名稱:國立中興大學
系所名稱:化學工程學系
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2001
畢業學年度:89
語文別:中文
論文頁數:104
中文關鍵詞:水膠酸鹼應答膨潤程度
外文關鍵詞:dextranhydrogelswelling ratio
相關次數:
  • 被引用被引用:0
  • 點閱點閱:526
  • 評分評分:
  • 下載下載:147
  • 收藏至我的研究室書目清單書目收藏:0
將鍵結glycidyl methacrylate(GMA)之聚葡萄糖(dextran)與acrylic acid(AAc)進行自由基共聚合,以製備酸鹼敏感型dextran水膠,並以FTIR檢測水膠中AAc的含量。實驗中探討AAc對水膠製備及膨潤性質的影響,結果顯示添加AAc會增加水膠的有效交聯密度及在較低的MA鍵結程度(degree of substitution, DS)時,可促進水膠的形成。但當我們進一步提高AAc的濃度,反而導致水膠聚合不完全、甚至無法完全形成。由size exclusion chromatography(SEC)實驗顯示AAc的添加能增加高分子分子量,將原本距離較遠的MA(-C=C-)鍵結起來而有類似架橋的作用。此外,利用水膠膨潤理論在不同pH值下比較水膠膨潤的應答行為,發現其膨潤應答程度主要受有效交聯密度與AAc所提供的離子滲透壓的綜合效應所影響。同時我們發現水膠的膨潤會隨buffer中鹽類濃度(NaCl)的增加而下降。由數據顯示解離程度(a)隨NaCl濃度的提升而呈現下降的趨勢。水膠中的可解離官能基(AAc)表現出的pKa值受到溶液中鹽類離子的影響。由於離子交換的緣故,適當的鹽類濃度有助於解離的產生。另外,高鹽類濃度(NaCl)時由於-COO-會和Na+ 形成離子鍵使得有效解離度下降。

In this study, pH-sensitive dextran hydrogels were prepared from conjugation of dextran with glycidyl methacrylate (GMA), followed by copolymerization of modified dextran with acrylic acid (AAc). The incorporated amount of AAc in hydrogels was determined by FTIR spectroscopy. The results indicate that the molecular weight and effective network density of hydrogels increase with addition of small amounts of AAc. The gel yield was reduced by addition of higher amounts of AAc owing to the ionic interaction of TMEDA with AAc and subsequent inhibition of TMEDA initiation. The effect of AAc on the increase in polymerization of MA-dextran was also confirmed by size exclusion chromatography.
pH-dependent swelling of hydrogels was strongly influenced by the effective network density and acrylic acid content of hydrogels. The change in the dissociation degree of acrylic acid in hydrogels and differences in the concentrations of ionized species inside and outside hydrogel as a function of pH and neutral salt concentration were calculated based on the Donnan equilibrium and Debye-Hückel theory. The calculated results indicate a good correlation with corresponding pH/salt-dependent swelling data.

第一章 緒論 1
1-1前言 1
1-2研究內容簡述 1
1-2-1丙烯酸對dextran水膠性質之影響與探討 1
1-2-2鹽類及pH值對酸鹼敏感型dextran水膠性質之影響與理論分析 3
第二章 文獻回顧 5
2-1水膠的定義及類型 5
2-1-1定義 5
2-1-2類型 5
2-2生技藥物 7
2-3酸鹼感應型水膠藥物傳遞設計原理 8
2-4聚葡萄糖dextran及dextran水膠 9
2-5水膠膨潤行為之理論分析 10
第三章 丙烯酸對dextran水膠性質之影響與探討 16
3-1前言 16
3-2實驗藥品與儀器 17
3-3水膠前驅高分子的製備及檢測 18
3-3-1簡述 18
3-3-2 MA-dextran的製備 19
3-3-3 1H-NMR檢測及DS值之計算 19
3-3-4 FTIR及SEC檢測 22
3-4水膠的製備及性質檢測 26
3-4-1水膠的製備 26
3-4-2水膠中AAc含量及聚合效益的測量 29
3-4-3水膠膨潤性質的測試 31
3-4-4水膠有效交聯密度的測試 31
3-4-5可溶的MA-dextran-co-AAc高分子的分子量分布測試 33
3-5結果與討論 33
3-6結論 55
第四章 鹽類及pH值對酸鹼敏感型dextran水膠性質之影響與理論分析 57
4-1前言 57
4-2理論簡介 57
4-3水膠的製備及性質檢測 60
4-3-1水膠的製備 60
4-3-2水膠膨潤性質的測試 60
4-3-3水膠有效交聯密度的測試 61
4-3-4水膠中AAc的實際含量測量 61
4-3-5鹽類濃度及pH值對水膠膨潤的交互影響測試 63
4-4結果與討論 63
4-5結論 93
第五章 結論 95
附錄…… 96
參考文獻 98

P. Y. Yeh, P. Kopeckova and J. Kopecek. Biodegradable and pH-sensitive hydrogels:synthesis by crosslinking of N,N’-dimethylacrylamide copolymer precusors. Polymer Chem., 32, 1627 (1994).
O. Wichterle and D. Lim. Hydrophilic gels for biological use. Nature, 185, 117 (1960).
R. W. Korsmeyer, Diffusion controlled systems: hydrogels, in: P. J. Tarcha (Ed.), Polymers for controlled drug delivery, CRC Press, Cpapter 2, 1991.
N. A. Peppas. (Ed.), Hydrogels in medicine and pharmacy, Vol. 1 CRC Press, 1988.
A. S. Hoffman, A. A. Afrassiabi, and L. C. Dong. Thermally reversible hydrogels. Ⅱ. Delivery and selective release of substances from aqueous solutions. J. Contr. Rel., 4, 213 (1986).
Y. H. Bae, T. Okano and S. W. Kim. A new thermo-sensitive hydrogels:Interpenetrating polymer networks from N-acryloylpyrrolidine and poly(oxyethylene). Makromol. Chem. Rapid Commun., 9, 185 (1988).
M. Heskins, J. E. Guillet and E. James. Solution properties of poly(N-isopropylacrylamide). J. Macromol. Sci. Chem., A2, 1441 (1968).
K. Kubota, I. Ando and S. Fujishige. Solution properties of poly(N-isopropylacrylamide)in water. Polym. J., 22, 15 (1990).
V. H. Lee. Oral route of peptide and protein drug delivery. Biopharm., 7/8, 39 (1992).
L. Hovgarrd and H. Bronsted. Dextran hydrogels for colon-specific drug delivery. J. Contr. Rel., 36, 159 (1995).
P. T. Murphy and R. L. Whistler. Dextrans. In R. L. Whistler (ed), Industrial Gums, Academic Press, New York, 513 (1973).
R. Vercauteren, D. Bruneel, E. Schacht and R. Duncan. Effect of the chemical modification of dextran on the degradation by dextranase. J. Bioact. Compat. Polym., 5, 4 (1990).
H. Hint. The pharmacology of dextran and physiological background for the clinical use of Rheomacrodex and Macrodex. Acta Anesthesiol. Belg., 2, 119 (1968).
C. Larson. Dextran prodrug-structure and stability in relation to therapeutic activity. Adv. Drug Deliv. Rev., 3,103 (1989).
E. Schacht. Polysaccharide macromolecules as drug carriers. In L. Illurn and S. S. Davis (Eds.), Polymers in Controlled Drug Delivery, ICI, Bristol, 131 (1987).
W. N. E. van Dijk-Wolthuis, O. Franssen, H. Talsma, M. J. van Steenbergen, Kettenes-van den Bosch JJ, Hennink WE, Synthesis, characterization and polymerization of glycidyl methacrylate derivatized dextran. Macromolecules. 28, 6317-6322 (1995).
P. J. Flory and R. Rehner, Statistical mechanics of crosslinked polymer networks. I. Rubberlike elasticity. J. Chem. Phys. 11, 521-526 (1943).
P. J. Flory, Principle of polymer chemistry, Cornell University Press, Ithaca, 1953.
L. Brannon-Peppas and N. A. Peppas, Equilibrium swelling behavior of pH-sensitive hydrogels. Chem. Eng. Sci. 46, 715-722 (1990).
J. Hasa, M. Ilavsky and K. Dusek, Deformational, swelling and potentiometric behavior of ionized poly(methacrylic acid) gels. I. Theory. J. Polym. Sci. Polym. Phys. 13, 253-262 (1975).
K. Dusek and W. Prins, Structure and elasticity of non-crystalline polymer networks. Adv. Polym. Sci. 6, 1-102 (1969).
J. Hasa, M. Ilavsky and K. Dusek, Deformational, swelling and potentiometric behavior of ionized poly(methacrylic acid) gels. II. Experimental results. J. Polym. Sci. Polym. Phys. 13, 263-274 (1975).
M. Ilavsky, K. Dusek, J. Vacik and J. Kopecek, Deformational, swelling and potentiometric behavior of ionized gels of 2-hydroxyethyl methacrylate-methacrylic acid copolymers. J. Appl. Polym. Sci. 23, 2073-2082 (1979).
L. Brannon-Peppas and N. A. Peppas, Structural analysis of charged polymeric networks. Polymer Bulletin. 20, 285-289 (1988).
J. Ricka and T. Tanaka, Swelling of ionic gels: quantitative performance of the donnan theory. Macromolecules. 17, 2916-2921 (1984).
L. Hovgaard, H. Brondsted, Dextran hydrogels for colon-specific drug delivery. J. Contr. Rel. 36, 159-166 (1995).
H. Brondsted, C. Anderson, Hovgaard, Crosslinked dextran — a new capsule material for colon targeting of drugs. J. Contr. Rel. 53, 7-13 (1998).
P. Edman, B. Ekman, I. Sjoholm, Immobilization of proteins in microspheres of biodegradable polyacyldextran. J. Pharm. Sci. 69, 838-842 (1980).
W. N. E. Van Dijk-Wolthuis, J. J. Kettenes-van den Bosch, A. van der Kerk-van Hoof, W. E. Hennink, Reaction of dextran with glycidyl methacrylate: An unexpected transesterification. Macromolecules. 30, 3411-3413 (1997).
S. H. Kim, C. C. Chu, Synthesis and characterization of dextran-methacrylate hydrogels and structural study by SEM. J. Biomed. Mater. Res. 49, 517-527 (2000).
S. H. Kim, C. Y. Won, C. C. Chu, Synthesis and characterization of dextran-based hydrogels prepared by photocrosslinking. Carbohydr. Polym. 40, 183-190 (1999).
H.-C. Chiu, G.-H. Hsiue, Y.-P. Lee, L.-W. Huang, Synthesis and characterization of pH-sensitive dextran hydrogels as a potential colon-specific drug delivery system. J. Biomater. Sci. Polym. Edn. 10, 591-608 (1999).
S. H. Kim, C. Y. Won, C. C. Chu, Synthesis and characterization of dextran-maleic acid based hydrogel. J. Biomed. Mater. Res. 46, 160-170 (1999).
H.-C. Chiu, A.-T. Wu, Y.-F. Lin, Synthesis and characterization of acrylic acid-containing dextran hydrogels. Polymer. 42, 1471-1479 (2001).
E. Errington, S. E. Harding, L. Illum, E. H. Schacht, Physico-chemical studies on diiodotyrosine dextran. Carbohydr. Polym. 18, 289-294 (1992).
E. F. Cluff, E. K. Gladding, R. Praiser, A new method for measuring the degree of crosslinking in elastomers. J. Polym. Sci. 45, 341-345 (1960).
K. Ulbrich, K. Dusek, M. Ilavsky, J. Kopecek, Preparation and properties of poly(N-butylmethacrylamide) networks. Eur. Polym. Sci. 14, 45-49 (1978).
K. Dusek, W. Prins, Structure and elasticity of non-crystalline polymer networks. Adv. Polym. Sci. 6, 1-102 (1969).
O. Franssen, O. P. Vos, W. E. Hennink, Delayed release of a model protein from enzymatically-degrading dextran hydrogels. J. Contr. Rel. 44, 237-245 (1997).
W. E. Hennink, O. Franssen, W. N. E. van Dijk-Wolthuis, Talsma H, Dextran hydrogels for the controlled release of proteins. J. Contr. Rel. 48, 107-114 (1997).
W. E. Hennink, H. Talsma, J. C. H. Borchert, S. C. de Smedt, J. Demeester, Controlled release of proteins from dextran hydrogels. J. Contr. Rel. 39, 47-55 (1996).
R. J. H. Stenekes, W. E. Hennink, Equilibrium water content of micropheres based on cross-linked dextran. Intern. J. Pharm. 189, 131-135 (1999).
O. Franssen, L. Vandervennet, P. Roders, W. E. Hennink, Degradable dextran hydrogels: controlled release of a model protein from cylinders and microspheres. J. Contr. Rel. 60, 211-221 (1999).
S. C. de Smedt, T. K. L. Meyvis, J. Demeester, P. van Oostveldt, J. C. G. Blonk, W. E. Hennink, Diffusion of macromolecules in dextran methacrylate solutions and gels as studied by confocal scanning laser microscopy. Macromolecules 30, 4863-4870 (1997).
O. Franssen, R. D. van Ooijen, D. de Boer, R. A. A. Maes, J. N. Herron, W. E. Hennink, Enzymatic degradation of methacrylated dextrans. Macromolecules 30, 7408-7413 (1997).
O. Franssen, R. D. van Ooijen, D. de Boer, R. A. A. Maes, W. E. Hennink, Enzymatic degradation of cross-linked dextrans. Macromolecules 32, 2896-2902 (1999).
W. N. E. van Dijk-Wolthuis, J. A. M. Hoogeboom, M. J. van Steenbergen, S. K. Y. Tsang, W. E. Hennink, Degradation and release behavior of dextran-based hydrogels. Macromolecules 30, 4639-4645 (1997).
W. J. Zhou, K. J. Yao, M. J. Kurth, Studies of crosslinked poly(AM-MSAS-AA) gels. II. Effects of polymerization conditions on the water absorbency. J. Appl. Polym. Sci. 64, 1009-1014 (1997).
W. J. Zhou, K. J. Yao, M. J. Kurth, Synthesis and swelling properties of the copolymer of acrylamide with anionic monomers. J. Appl. Polym. Sci. 62, 911-915 (1996).
S. Caglio, P. G. Righetti, On the pH dependence of polymerization efficiency, as investigated by capillary zone electrophoresis. Electrophoresis 14, 554-558 (1993).
S. M. Deng, F. M. Meng, Copolymerization of acrylamide with acrylonitrile by using ammonium persulfate-N,N,N’,N’-tetramethyl ethylenediamine in aqueous solution. J. Mater. Sci. Pure. Appl. Chem. A31, 1289-1301 (1994).
X. D. Feng, X. Q. Guo, K. Y. Qiu, Study of the initiation mechanism of the vinyl polymerization with the system persulfate/N,N,N’,N’ - tetramethylethylenediamine. Makromol. Chem. 189, 77-83 (1988).
L. Vervoort, G. van den Mooter, P. Augustijns, R. Busson, S. Toppet, R. Kinget, Inulin hydrogels as carriers for colondrug targeting: I. Synthesis and characterization of methacrylated inulin and hydrogel formation. Pharm. Res. 14, 1730-1737 (1997).
L. Brannon-Peppas, N. A. Peppas, Structural analysis of charged polymeric networks. Polym. Bull. 20, 285-289 (1988).
H.-C. Chiu,Y.-F. Lin,Y.-H. Hsu, Effects of acrylic acid on preparation and swelling properties of pH-sensitive dextran hydrogels. Biomaterials. in press (2001).
B. A. Firestone and R. A. Siegel, pH, salt, and buffer dependent swelling in ionizable copolymer gels: tests of the ideal Donnan equilibrium theory. J. Biomater. Sci. Polym. Edn. 5, 433-450 (1994).
G. M. Eichenbaum, P. F. Kiser, S. A. Simon, and D. Needham, pH and ion-triggered volume response of anionic hydrogel microspheres. Macromolecules 31, 5084-5093 (1998).

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top