(3.235.245.219) 您好!臺灣時間:2021/05/10 00:59
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:楊振欽
研究生(外文):Yang Chen Chin
論文名稱:異氰酸鹽及其衍生物以單醇類及雙醇類進行高溫醇化反應的研究
論文名稱(外文):Study on High-Temperature Alcoholysis of Isocyanate Derivatives Using n-Butanol and Ethylene Glycol
指導教授:戴憲弘
指導教授(外文):S. H. Dai
學位類別:碩士
校院名稱:國立中興大學
系所名稱:化學工程學系
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2001
畢業學年度:89
語文別:中文
論文頁數:104
中文關鍵詞:醇化反應異氰酸鹽正丁醇乙二醇
外文關鍵詞:alcoholysisisocyanatebutanolethylee glycol
相關次數:
  • 被引用被引用:3
  • 點閱點閱:237
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
幾年來,由於國內外PU材料需求的持續成長,伴隨著的便是PU廢料的處理問題以及 TDI 生產的淨化程序中,產生的 " TDI渣 ",這些廢料或渣所含的主要功能性化合物,仍是以異氰酸鹽及其衍生物為主。對於這些廢料的處理,現行的埋掩埋法及焚燒法都未符合現在的環保需求。本研究乃針對這些廢料,將施以單醇類正丁醇及雙醇類乙二醇的高溫醇化程序來處理,以找出一個共通的方法來處理 TDI 渣及 PU 廢料上所產生的污染及環保問題。
研究的實驗利用模式化合物與正丁醇進行高溫醇化反應的試驗,建立了在240℃ 高溫下反應 2-3 小時為最佳的正丁醇高溫醇化反應條件,發現能將異氰酸鹽及其衍生物轉化成高產率的苯胺及胺脂類等結構明確的產物,這些產物將能有利的回收及應用。
此外,也研究模式化合物與乙二醇的高溫醇化反應,從此系列的實驗發現,以往文獻中以醇化反應進行廢料回收時所生成之二氧化碳氣體的來由,也從中發現異氰酸鹽及其衍生物進行乙二醇高溫醇化反應時會先生成中間產物 Ethylene Carbonate,且醇化反應最後均形成苯胺及2-anilinoethanol等的主要產物,清楚地建立起乙二醇高溫醇反應的化學反應機制。最後利用乙二醇高溫醇化反應,也能應用於具有碳酸鹽基的 Polycarbonate 及軟性、硬性泡綿的廢料回收上,結果發現利用此二種醇化反應的確能將上述之高分子廢料轉化成能再回收利用的低分子化合物。
Because of increasing quantity of PU wastes internationally coupling with growing environmental concern for the TDI production tars, current burning and burial methods of dealing with these problems are clearly not acceptable. Since these materials are mostly isocyanate derivatives containing urethane, urea and carbodiimde functionality, this research attempts to find a common chemical solution of dealing with these materials. Our research has been using alcoholysis of PU materials with n-butanol and ethylene glycol to digest the wastes and converted them into low molecular weight alcohols and amines for further uses.
In order to demonstrate the feasibility of this approach, our experiment started with alcholysis of model derivatives of phenyl isocyanate that include urethane, urea, dimer, trimer, and others with n-butanol, and established that most of isocyanate derivatives could be converted at 240℃ into n-butyl carbamate and aniline in good yield. In addition, by treating the same model derivatives of phenyl isocyanate with ethylene glycol, we uncovered that the alcoholysis all goes through ethylene carbonate as intermediate which reacts further with aniline to form 2-anilinoethanol as the EG alcholysis product.
Finally, we are able to demonstrate that both alcoholysis methods could digest polyurethanes, such as flexible and rigid foams, or polycarbonate into low molecular weight alcohols and amines of definite structures. It is hoping that further works will carry on to find the use of these low molecular weight alcohols and amines as PU raw materials.
目 錄
第一章 緒論……………………………………………………………………1
1.1 研究背景……………………………………………..…………………1
1.2 研究目的……..…………………………………………………………2
1.3文獻回顧……….……………………………..…………………………4
1.3.1 異氰酸鹽的活性…………………….………………………………4
1.3.2 模範化合物單體的合成…………….………………………………6
1.3.2.1 合成Uretidinedione………………………………..……………6
1.3.2.2 合成Triphenyl isocyanurate………………………………………9
1.3.2.3 合成n-Butyl N-phenyl carbamate………………..…….………..11
1.3.2.4 合成 1,3-Diphenyl carbodiimide…………………..……………11
1.3.2.5 合成 Uretoneimine…………………………….……………….12
1.3.2.6 合成2-Butyl-1,3-diphenylpseudourea……..…………………13
1.3.3 TDI渣的回收…………………………….…………………………14
1.3.3.1 使用高溫水解來轉化TDI渣成TDA………………….………14
1.3.3.2 使用polyols 來作醇化反應………………………..…………15
1.3.3.3 使用小分子量的雙醇類、三醇類或雙胺類……..……………15
1.3.4 PU廢料回收………………………………………..………………16
1.3.4.1 水解 ( Hydrolysis )……………………………………………16
1.3.4.2 醇解 ( Glycolysis )……………………………………………18
1.3.4.3 熱裂解 ( Pyrolysis )…………………………………………..20
1.3.4.4 胺解 ( Aminolysis )……………………………………………21
1.4 研究方向及大綱………………………………………..……………..23
1.4.1 第一部分 合成模範化合物單體…………………………………..24
1.4.2 第二部分 模範化合物的高溫醇化反應及應用….………………24
第二章 實驗藥品、儀器與方法………………………………………………25
2.1 實驗藥品…………………..……………………………………..……25
2.2 實驗儀器……………………………..…………………………………32
2.3 實驗步驟及方法………………….……………………………………34
2.3.1 模範化合物之合成…………………………………………………34
2.3.1.1 合成Uretidinedione….….………………………………………34
2.3.1.2 合成Triphenyl isocyanurate………….………………………….36
2.3.1.3 合成n-Butyl N-phenyl carbamate………………………………38
2.3.1.4 合成Diphenyl carbodiimide……………………………..……40
2.3.1.5 合成Uretoneimine……………………………………..………42
2.3.1.6 合成2-Butyl-1,3-diphenylpseudourea……..…………………44
2.3.2 以氣相層析儀建立模範產物之檢量線……………………………46
2.3.2.1 ε-Caprolactam & BPC & Aniline……………………………..46
2.3.2.2 ε-Caprolactone & 2-Anilinoethanol & Aniline………………..47
2.3.2.3 ε-Caprolactam & 2-Phenoxyethanol & Phenol……….……….48
2.3.3 以正丁醇進行模範化合物之高溫醇化反應……………….……….50
2.3.3.1 Diphenyl urea與正丁醇的高溫醇化反應………………...…..…50
2.3.3.2 Uretdidinedione與正丁醇的高溫醇化反應…………...………..51
2.3.3.3 Triphenyl isocyanurate與正丁醇的高溫醇化反應………...…....51
2.3.3.4 Diphenyl carbodiimide與正丁醇的高溫醇化反應…...…….…..51
2.3.3.5 Uretoneimine與正丁醇的高溫醇化反應……………….………52
2.3.3.6 Butyl isourea與正丁醇的高溫醇化反應………….…………….52
2.3.4 以乙二醇進行模範化合物之高溫醇化反應……………………...52
2.3.4.1 Phenyl isocyanate與乙二醇之高溫醇化反應………….……….52
2.3.4.2 Diphenyl urea與乙二醇之高溫醇化反應……………………….53
2.3.4.3 Diphenyl carbodiimide與乙二醇之高溫醇化反應………..……54
2.3.4.4 n-Butyl N-phenyl carbamate與乙二醇之高溫醇化反應……..…54
2.3.4.5 Uretidinedione與乙二醇之高溫醇化反應………………..….....54
2.3.4.6 Triphenyl isocyanurate與乙二醇之高溫醇化反應……..……....55
第三章 結果與討論……………………………………………………………59
3.1 模範化合物之合成…………………………………………...…………59
3.1.1 合成 Uretidinedione ……………………………………..………….59
3.1.2 合成 Triphenyl isocyanurate……………………..……..…………...59
3.1.3 合成 n-Butyl N-phenyl carbamate……………………..……………60
3.1.4 合成 Diphenyl carbodiimide……………….…………..……………60
3.1.5 合成 Uretoneimine……………………………………..……………61
3.1.6 合成 2-Butyl-1,3-diphenylpseudourea……………………………61
3.2 製備檢量線………………………..………………………….…………66
3.3 模範化合物與正丁醇之高溫醇化反應……………………...…………67
3.3.1 Diphenyl urea與正丁醇之高溫醇化反應……………………..……..67
3.3.2 Uretidinedione與正丁醇之高溫醇化反應……………..……………71
3.3.3 Triphenyl isocyanurate與正丁醇之高溫醇化反應……....…………..74
3.3.4 Diphenyl carbodiimide與正丁醇之高溫醇化反應……..…………...76
3.3.5 Uretoneimine與正丁醇之高溫醇化反應………………..…………..79
3.3.6 Butyl isourea與正丁醇之高溫醇化反應……………..…..………….81
3.4 模範化合物與乙二醇之高溫醇化反應………………………………...87
3.4.1 Phenyl isocyanate與乙二醇合成EG carbamate後之高溫醇化反應.87
3.4.2 Uretidinedione與乙二醇之高溫醇化反應……………………..……92
3.4.3 Triphenyl isocyanurate與乙二醇之高溫醇化反應…..…………...….93
3.4.4 n-Butyl N-phenyl carbamate與乙二醇之高溫醇化反應…….………95
3.4.5 Diphenyl urea與乙二醇之高溫醇化反應…………………………....96
3.4.6 DPCDI與乙二醇之高溫醇化反應………………………..…………98
第四章 總結……………………………………………………………..……102
1.H. Ulrich, “Chemistry and Technology of Isocyanates”, p. 371 (1996).
2.H. Ulrich, “Chemistry and Technology of Isocyanates”, p. 393 (1996).
3.H. Ulrich, “Chemistry and Technology of Isocyanates”, p. 45-46 (1996).
4.R.G. Arnold, I. A. Nelson and I. I. Verbanc, Chem. Rev. 57, 47 (1957).
5.R.E. Buckles and L. A. McGrew, J. Am. Chem. Soc. 88, 3582 (1966).
6.R.G. Arnold, J.A. Nelson and J.J. Verbanc, Recent Advances in Isocyanate Chemistry, p.47 (1956).
7.A. W. Hofmann, Ber. 3, 765 (1870).
8.L. C. Raiford and H. B. Freyermuth, J. Org. Chem. 8, 230 (1943).
9.H. L. Snape, J. Org. Chem. Soc. 49, 254 (1886).
10.W. J. Farrissey, Jr., R. J. Ricciardi and A. A. R. Sayigh, J. Org. Chem. 33, 1913 (1968).
11.J. H. Saunders and R. J. Slocombe, Chem. Rev., 43, 203 (1948).
12.H. Ulrich, “Chemistry and Technology of Isocyanates”, p. 408 (1996).
13.Integrated Spectral Data Base System ( SDBS ) for Organic Compounds (http://www.aist.go.jp/RIODB/SDBS/menu-e.html ).
14.H. Ulrich, “Chemistry and Technology of Isocyanates”, p. 47-51 (1996).
15.R. Richter, Chem. Ber. 101, 174-178 (1968).
16.R.G. Arnold, J.A. Nelson and J.J. Verbanc, Recent Advances in Isocyanate Chemistry , 59 (1956).
17.J. H. Saunders and R. J. Slocombe, Chem. Revs. 43, 203-18 (1948).
18.S. Ozaki, Chem. Rev. 7, 457 (1972).
19.R. Richter and H. Ulrich, ‘Synthesis and preparative applications of isocyanates’, in the Chemistry of Cyanates and Their Thio Derivatives (ed. S. Patai), John Wiley, Chichester, 1977.
20.S. Herbstman, J. Org, Chem. 30, 1259 (1965).
21.J. K. Jones and N. G. Savill, J. Chem. Soc. 1957, 4392I.
22.C. K. Kongon, J. Am. Chem. Soc. 78, 4911 (1956).
23.H. Tiecklmann and H. W. Post, J. Org. Chem., 13, 268 (1948).
24.R.G. Arnold, J.A. Nelson and J.J. Verbanc, Recent Advances in Isocyanate Chemistry , 61 (1956).
25.S. Sivakamasundari and R. Ganesan, J. Org. Chem. 49, 720 (1984).
26.S. Roy and K. K. Majumdar, Synth. Commun. 24, 333 (1994).
27.H. Ulrich, “Chemistry and Technology of Isocyanates”, p. 98-99 (1996).
28.T. W. Campbell, U. S. Patent, 2,853,473 (1958), “Production of Carbodiimides”
29.H. J. Scholl and R. Welte, U. S. Patent, 5,202,358 (1993) “Process for the Preparation of Liquid Storable Organic Isocyanate Containing Carbodiimide and/or Uretoneimine Groups and their Use for the Preparation of Polyurethane Plastics”
30.A. Ibbotson, U. S. Patent, 4,085,140 (1978), “Carbodiimdies”
31.T. W. Campbell and K. C. Smeltz, J.Amer. Chem. Soc., 28, 2069 (1963).
32.T. W. Campbell, J. J. Monagle and V. S. Foldi, J.Amer. Chem. Soc., 84, 3673 (1962).
33.W. B. McCormack, U. S. Patent .2,663,737 (1955).
34.H. Ulrich, “Chemistry and Technology of Isocyanates”, p. 410-411 (1996).
35.H. Ulrich, “Chemistry and Technology of Isocyanates”, p. 54-55 (1996).
36.S. E. Forman, C. A. Erickson and H. Adelman, J. Org. Chem., 28, 2653 (1963).
37.E. H. Kober, Hamden and P. D. Hammond, U. S. Patent 3,499,035 (1967), “Toluene Diamine Recovery Process”
38.H-J. Koch, Leverkusen and Germany, U. S. Patent, 3,128,310 (1964), “Recovery of Amines”
39.I. B. Van Horn and E. L. Powers, U. S. Patent, 3,331,876 (1976), “Recovery of Toluenediamines”
40.J. R. Cassata, U. S. Patent, 4,137,266 (1979), “Process for Toluene Diamine Recovery”
41.J. R. Cassata, U. S. Patent, 4,091,009 (1978), “Process for Deactivating Toluene Diisocyanate Distillation Residue”
42.M. J. Marks, J. R. Porter and R. A. Plepys, U. S. Patent, 4,654,443 (1987), “Hydrolysis of Isocyanate Distillation Bottoms”
43.A. Reischl, U. S. Patent, 4,293,456 (1981), “Process for the Production of Polyurethane Plastics”
44.A. Reischl, U. S. Patent, 4,311,800 (1982), “Process for Working up Cross-linked Isocyanate Distillation Residues Containing Urea Group and Use of the Products of the Process as Starting Components for the Production of Synthetic Resins”
45.M. L. Rosin, J. M. O''Connor, W. J. Schnabel and R. M. Early, U. S. Patent, 4,480,081 (1984), “ Isocyanate - reactive Compound from Modified TDI Distillation Residue Intermediates and Polyurethanes Prepared Tereform ”
46.L. M. Zwolinski and J. W. Frink, U. S. Patent, 4,143,008 (1979), “Novel Adhesive, Molding and Filler Composition Incorporating Toluene Diisocyanate Residue”
47.S. D. Gagnon and S. A. Bananto, U. K. Patent, 2,314,082 (1997), “Recovery of Products from Toluenediisocyanates Residue”
48.A. Keshi, K. Kodama, I. Takemura, Y. Tairaka and K. Yoshinaga, U. S. Patent, 4,032,574 (1977), “Production of Polyetherpolyols Useful in Preparing Rigid Polyurethane Foams”
49.M. Okamoto, M. Nemoto, Y. Kataoka and Y. Tokugawa, U. S. Patent, 4,055,585 (1977), “Preparation of Liquid TDI for Composition”
50.A. Reischl, U. S. Patent, 4,251,401 (1981), “Suspension of Isocyanate Distillation Residues in Polyols ”
51.M. C. Rees and O. J. Proulx, U. S. Patent, 4,506,040, “Preparation of a Stable Dispersion from TDI Residue and the Use in the Production of Polyurethane Compositions”
52.J. L. Gerlock, J. Braslaw and J. Albright, U. S. Patent, 4,316,992 (1982), “Process for Polyol Recovery from Polyurethane Foam Comprising Alcohol and Steam Hydrolysis”
53.G. Niederdellmann and E. Grigat, U. S. Patent, 4,511,680 (1985), “Process for the Continuous High Temperature Glycolytic Cleavage of Polyurethane Plastics Waste in Screw Machines”
54.N. Yoshitake and M. Furukawa, Journal of Analytical and Applied Pyrolylsis, 33, 269-281 (1995).
55.H. Ulrich, “Chemistry and Technology of Isocyanates”, p. 1-2 (1996).
56.國立中興大學戴憲弘博士未發表之實驗紀錄
57.E. Querat, L. Tighzert, J. P Pascanlt and K. Dusek, Ang, Makrom. Chemie, 242, p.1 ( 1996 ).
58.J, Tang, T. Mohan and John G. Verkade, J. Org. Chem. 59, 4931-4983 (1994).
59.Ashida, K. Proceedings of the SPI 30th Annual Techical / Marketing Conference, Oct. 15-17, Toronto, Canada, p.354-362 ( 1986 ).
60.H. R. Van Der Wal, Proc. of SPI Annual Techical / Marketing Conference, 34th(Polyurethanes 92), 560-4 (1992).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔