(3.238.96.184) 您好!臺灣時間:2021/05/12 16:53
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:何欣憓
研究生(外文):Hsin-Hui Ho
論文名稱:探討不同品種山藥之支鏈澱粉微細結構
論文名稱(外文):Studies on the Fine Structure of Amylopectin
指導教授:盧訓盧訓引用關係
指導教授(外文):Shin Lu
學位類別:碩士
校院名稱:國立中興大學
系所名稱:食品科學系
學門:農業科學學門
學類:食品科學類
論文種類:學術論文
論文出版年:2001
畢業學年度:89
語文別:中文
論文頁數:76
中文關鍵詞:山藥澱粉支鏈澱粉理化特性流變特性微細結構
外文關鍵詞:yamDioscoreaamylopectinphysicochemical propertiesrheological propertiesfine structure
相關次數:
  • 被引用被引用:8
  • 點閱點閱:165
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
本研究以1999年採收之四種山藥為試驗材料。包括D. alata種的山藥台農2號 (D. alata L.)與中國長品系 (D. alata L.) ,及D. batatas種的壽豐山藥 (D. batatas Decene ) 與日本山藥(D. batatas),分離出山藥澱粉後,進一步分離得山藥支鏈澱粉,進行微細結構及流變性質之分析,並將微細結構性質與先前文獻對其理化特性之研究作相關性之探討與印證。
結果顯示四種山藥品種支鏈澱粉之平均聚合度介於3400~4400個葡萄糖基,平均鏈長約18.8~28.5個葡萄糖基,平均鏈長與平均聚合度呈負相關,與藍價及長鏈區分含量呈顯著相關性。D. alata種的山藥支鏈澱粉(台農2號山藥與中國長品系)較 D. batatas 種的山藥支鏈澱粉(壽豐山藥與日本山藥)有較高的平均鏈長以及較多的長鏈區分含量,這些均可能是影響山藥澱粉結晶型態的主因。
四種山藥支鏈澱粉均為含有少量超長鏈,且呈三個區分之鏈長分佈型態,而不同品種間亦有差異性。相關性質分析發現,支鏈澱粉的各區分含量及鏈長分布的確影響其平均鏈長的數值。
山藥澱粉之磷含量及膨潤力與其支鏈澱粉之平均聚合度、平均鏈數、各區分含量比例及平均鏈長、藍價等均呈顯著之相關性,顯示澱粉的結晶性與支鏈澱粉之鏈長分布有密切之關係,而其微細結構亦影響山藥澱粉顆粒之溶解度、成糊特性及凝膠性質。
山藥支鏈澱粉溶液以應變掃描所得之流變模數值(G’, G”)接近且偏低,並表現趨近於流體之型態。在頻率掃描之結果,四種均為介於膠體與稀薄溶液間之澱粉糊液。其中台農2號山藥支鏈澱粉溶液表現較其他三者更趨近流體,推論應是其平均聚合度較小,或分子間靜電斥力較大所致。
Amylopectin isolated from four cultivars of yam, Tainung No.2 (D. alata L.), 80W02 (D. alata L.), Shoufeng (D. batatas Decene), and Jihpen (D. batatas) were used as test samples, The fine structure as well as rheological properties were also examined in the study. Moreover, the relationship between the fine structure and the physicochemical properties of starch was also elucidated.
The results indicated that the average degree of polymerization (DP) of four cultivars of yam amylopectin were ranged between 3400~4400 glucose units, and have the average chain length (CL) of 18.8~28.5 glucose units. The average chain length of amylopectin was showed the negtive correlation with DP, blue value, and long chain distribution content. The varieties of D. alata showed the higher CL and long chain distribution content than D. batata. The factors showed above may strongly affect the crystalline patterns of yams.
The chain length distribution profile of amylopectin from four cultivars showed trimodel distribution that contain small amount of extra long chain. Different varieties of amylopectin also had the effect on distinct distribution.
The phosphate content and swelling power of yam starches showed a significant correlation to DP, CL, the average chain number (NC) , the ratio of distribution content and average chain length for each distribution, and blue value of amylopectin. These might indicate the stronger relationship between crystalline patterns of yam starches and the chain length distribution of its fine structure. The fine structure properties affected solubility, pasting behaviors, and rheological properties of yam starches as well.
The rheological moduli , G’and G”, of amylopectin in torque sweep from all yams were low and very close, the solution tend to behave as liquid-like. In frequency sweep, the four amylopectin showed the paste characteristic between gel and dilute solution. The amylopectin of Tainung No.2 (D. alata L.) had weaker paste behavior than others. Which may due to the different degree of polymerization and the strongerelectrostatic repulsions between molecules in amylopectin.
目錄
中文摘要………………………………………………………………1
英文摘要………………………………………………………………3
壹、前言…………………………………………………………….5
貳、文獻整理……………………………………………..……..…….7
一、山藥之簡介………………………………………..……..……7
二、澱粉的組成….……………………………………...…..……..8
三、澱粉的凝膠機制………………………………..………..…..19
四、影響澱粉凝膠流變性質之因子………………..……………22
五、流變性質測定……………………………………..…………24
參、實驗架構………………………………………….……………...29
肆、材料與方法………………………………………….…………...30
一、材料……………………………………………………….….30
二、方法…………………………………………………….…….30
(一)山藥澱粉之分離…………………………………….….30
(二)山藥支鏈澱粉之純化…….………………………….…31
(三)總碳水化合物….…………………………….…………32(四)還原醣…….…………………………….………………32
(五)平均聚合度…….…………………………….…………33
(六)最大吸收波長……..…………………………………….34
(七)藍價…………..………………………………………….34
(八)b-amylase水解率……………………………………….35
(九)平均鏈長…………………………..…………………….35
(十)平均外鏈長、平均內鏈長……………..………….……36
(十一)平均鏈數………..………………………………….…36
(十二)分子鏈長分佈..………………………………….……37
(十三)凝膠流變性質..……………………………….…....…37
(十四)統計分析………………………………….…..………38
伍、結果與討論……………………………………………………….39
ㄧ、平均聚合度及平均鏈長……………………….………….….39
二、平均鏈長………………………………..…………….…..…..39
三、b-amylase水解率、平均外鏈長及平均內鏈長……………44
四、鏈長分布…………………………………………….………..46
五、藍價及最大吸收波長…………….…………………………..53
六、山藥支鏈澱粉微細結構與山藥澱粉理化特性間之
相關性分析………………………………..………….………55
七、山藥澱粉成糊過程流變性質測定…………………………...58
陸、結論………………………….……………………….…….……..66
柒、參考文獻…………………….……………………….……..….…68
圖目錄
圖一、澱粉顆粒之結構………………………………………………..10
圖二、澱粉顆粒之結構………………………………………………..10
圖三、澱粉之X-射線繞射圖譜……………………………………....12
圖四、A結晶形澱粉之立體結構圖…………………………………..13
圖五、B結晶形澱粉之立體結構圖…………………………………..14
圖六、直鏈澱粉結構模型圖………………………………………….16
圖七、支鏈澱粉結構模型圖………………………………………….18
圖八、理想黏彈性體、黏性體及一般黏彈性體
於動態流變試驗中應力與應變之關係……………………….25
圖九、溶液系統中貯存模數、損耗模數及複數黏度
對頻率之依賴性……………………………………………….28
圖十、台農2號山藥支鏈澱粉之鏈長分布圖………………………….47
圖十一、中國長品系山藥支鏈澱粉之鏈長分布圖……………..…….47
圖十二、壽豐山藥支鏈澱粉之鏈長分布圖…………..……….………48
圖十三、日本山藥支鏈澱粉之鏈長分布圖……………..…….………48
圖十四、10%台農2號山藥支鏈澱粉之應變掃描……..…….………62
圖十五、10%台農2號山藥支鏈澱粉之頻率掃描…………..…….…62
圖十六、10%中國長品系山藥支鏈澱粉之應變掃描…….…….……..63
圖十七、10%中國長品系山藥支鏈澱粉之頻率掃描……..…….……..63
圖十八、10%壽豐山藥支鏈澱粉之應變掃描…………..……….……..64
圖十九、10%壽豐山藥支鏈澱粉之頻率掃描……………..………….64
圖二十、10%日本山藥支鏈澱粉之應變掃描…………………………65
圖二十一、10%日本山藥支鏈澱粉之頻率掃描……..……………….65
表目錄
表ㄧ、山藥支鏈澱粉之平均聚合度,平均鏈長及平均鏈數………41
表二、山藥支鏈澱粉之微細結構性質與山藥澱粉理化特性之
相關性分析……………………………………………………43
表三、山藥支鏈澱粉之β-amylase水解率,平均鏈長
,平均外鏈長及平均內鏈長……..………………..…….…..45
表四、山藥支鏈澱粉之鏈長分佈及百分比……….…………..……50
表五、山藥支鏈澱粉之鏈長分佈……………………………………51
表六、山藥支鏈澱粉之藍價,最大吸收波長………………………54
林意清。2000。不同品種山藥澱粉之理化特性探討。 中興大學食品科學研究所碩士論文。
王俊權,王建文,張永和。1997。不同品種芋澱粉之理化性質之探討。食品科學24:282-294。
呂政義,蔡秀玲。1985。山藥塊莖及種子澱粉理化性質之探討。食品科學12:201-212。
那琦,甘偉松,楊榮季。1978。台灣產藥材之生化研究(IV)台灣產零餘子之生藥學研究。中國醫藥學院研究年報9:330-375。
官燦奎。1998。台灣產芋澱粉具獨特理化特性因素之探討。台灣大學食品科技研究所碩士論文。
柯耀筆。1998。八種澱粉其各劃分之理化性質及其化學構造之探討。台灣大學農業化學研究所博士論文。
陳鈴霓。1994。台灣稻米支鏈澱粉之微細結構與理化特性之相關性 中興大學食品科學研究所碩士論文。
彭德昌。1988。山藥新品種比較試驗。台灣省花蓮區農業改良場年報76:69。
曾仁佑。1997。台灣稻米直鏈澱粉之微細結構。輔仁大學食品營養研究所碩士論文。
曾永瀚。1996。直支鏈澱粉分子微細結構對其理化特性及流變性質的影響。台灣大學食品科技研究所博士論文。
楊啟春,賴惠民,呂政義。1984。米澱粉分離法之改進。食品科學11:158-162。
劉堂瑞,黃增泉。1978。Dioscoreaceae薯蕷科。In: Flora of Taiwan。pp:100-109。
劉新裕,王昭月,徐原田,宋麗梅。1995。本省山藥之研究。中醫藥雜誌6:111-126。
蔡玫琳。1997。澱粉顆粒及其分子之成糊行為。台灣大學食品科技研究所博士論文。
顏名聰。1997。甘藷澱粉與米澱粉之交互作用對糊化、凝膠及回凝影響,中國文化大學生活應用科學研究所碩士論文。
American Association of Cereal Chemists. 1983. Approved Methods of the AACC. 8th ed. The Association of Cereal Chemists: St. Paul, MN.
Biliaderis, C. G. 1992. Characterization of starch networks by small strain dynamic rheometry. p87 in “Development in carbohydrate chemistry “ Alexander, R.J., and Zobel, H. F. eds. The American Association of Cereal Chemistry.
Biliaderis, C. G., and Zawistowski, J. 1990. Viscoelastic behavior of aging starch gels :effects of concentration, temperature, and starch hydrolyzates on network properties. Cereal Chem. 67:240.
Blakeney, A. B., Welsh, L. A. and Bannon, D. R. 1991. Rapid viscometric analysis of rice flour. IRC Newsletter 16: 11-12.
Clark, A. H., Gidley, M. J., Richardson, R. K., and Rose-Morphy, S. B. 1989. Rheological studies of aqueous amylose gels : the effects of chain length and concentration on gel modulus. Macromolecules 22:346.
Collison, R. 1968. In starch and its derivations. p.168 Radley, J. A. ed. London, Chapman and Hall.
Cooke, D., and Gidley, M. J. 1992. Loss of crystalline and molecular order during starch gelatinization : Origin of enthalpic transition. Carbohydr. Res. 227:103-112.
Doublier, J. L., and Choplin, L. 1989. A rheological description of amylose gelation. Carbohydr. Res. 193:215.
Doublier, J. L., and Choplin, L. 1989. A rheological description ofamylose gelation. Carbohydr. Res. 193:215
Dubois, M., Gilles, K. A., Hamitlon, J. k., Robers, A. P. and Smith, F. 1956. Colorimetric method for determination of sugars and related substances. Anal. Chem. 28:350-356.
Eills, H. S., Ring, S. G., and Whittam, M. A. 1988. Time-dependent changes in the size and volume of gelatinized starch granules on storage. Food Hydrocolloids 2:231.
Eliasson, A. C. 1985. Retrogradation of starch as measured by differential scanning calorimetry In “Approaches to Research on Cereal Carbohydrates” R. D. Hijj and L. Munck(eds), p.93-98. Elsevier Science Publishers B. V., Amsterdam.
French, D. 1972. Fine structure of starch and its relationship to the organization of starch granules. J. Jap. Soc. Starch. 19:8-25.
French, D. 1984. Organization of starch granules Ch. VII in : Starch Chemistry and technology, vol. 2. p.184-248 Whistler, R.L., BeMiller, J. M. and PaschalL E. F. (eds.), Academic Press, N. Y. N. Y.
Gidley, M. J., and Bulpin, P. V. 1987. Crystallization of maltooligosaccharides as models of the crystalline forms of starch : Minimum chain length requirement for the formation of double helices. Carbohydr. Res. 161:291.
Gilbert, G. A., and Spragg, S. P. 1964. Iodimetric determination of amylose. In : Method in Carbohydrate Chemistry (Whistler ed.), vo1. IV, p.168-169. Academic Press, Inc, N. Y. N. Y.
Gibson, T. S., Alqalla, H. and McCleary, B. V. 1992. An improved enzymatic method for the measurement of starch damage in wheat flour. J. Cereal Sci. 15:15.
Hizukuri, S., Fujii, M. and Nikuni, Z. 1961. Effect of temperature during germination on the crystalline type of starch in soybean seedlings. Nature 192:239
Hizukuri, S., Tabata, S., and Nikuni, Z. 1970. Studies on starch phosphates. 1. Estimation of glucose-6-phosphate residues in starch and the presence of other bound phosphate(s). Starch. 22(10):338-343.
Hizukuri, S., Takeda, Y., and Yasuda, M. 1981. Multibranched nature of amylose and the action of debranching enzymes. Carbohydr. Res. 94:205.
Hizukuri, S., Kaneko, T., and Takeda, Y. 1983. Measurement of the chain length of amylopectin and its relevance to the origin of crystalline polymorphism of starch granules. Biochim. Biophys. Acta. 760:188
Hizukuri, S. 1985. Relationship between the distribution of the chain length of amylopectin and the crystalline structure of starch granules. Carbohydr. Res. 141:295.
Hizukuri, S. 1996. Starch : Analytical aspects. Ch.9, In Carbohydrate in Food. A. C. Eliasson (Ed.), p.347-429. Marcel Dekker, Inc., New York.
Imberty, A., Chanzy, H., and Perez, S. 1987. New three dimensional structure for A-type starch. Macromolecules 20:2634.
Imberty, A., and Perez, S. 1988. A revisit to the three dimensional structure for B-type starch. Biopolymers 27:1205.
Imberty, A., Bul''eon, A. Tran., V. and Perez, S. 1991. Recent advances in knowledge of starch structure. Starch 43:375.
Jane, J. L., and Chen, J. F. 1992. Effect of amylose molecular size and amylopectin branch chain length on paste properties of starch. Cereal Chem. 69:60-65.
Juliano, B.O.1975. The gel consistency and viscosity test as an index of eating quality of mill rice. Int. Rice Res. Inst., Los Banos, Philipines.
Kasemsuwan T., and Jane, J. 1994.Ⅰ.Location of amylose in normal corn starch granules. Ⅱ.Location of phosphodiester cross-linking revealed by phosphorous-31 nuclear magnetic resonance. Cereal Chem. 71:282-287.
Katz, J. R. and van Itallie, T. B. 1930. The physical chemistry of starch and bread making. V. All varieties of starch have similar retrogradation spectra. Z. physik. Chem. Abt. A. 150:90.
Kayisu, K., Hood, L. F. and Vansoest, D. J. 1981. Charcaterization of starch and fiber of banana fruit. J. Food Sci. 46:1885.
Keetels, C. J. A. M., and Van Vliet, T. 1994. Gelation and retrogradation of concentrated starch gels. in Gums and stabilizers for the Food Industry, G. O. Phillips, P. A. Williams and D. J. Wedlock, (Ed.) , p.271-280 IRL, Oxford, New York, Tokyo.
Lii, C. Y., Chiou, T. W. and Chu, Y. L. 1987. The Degree of branching in amylose from tuber and legume starches. Proc. NatL Sci. Counc. ROC 11:341.
Lii, C. Y., Tsai, M. L. and Tseng, K. H. 1996. Effect of amylose content on the rheological property of rice starch. Cereal Chem. 73:415-420.
Leloup, V. M., Cdonna, P., and Buleon, A. 1991. Influence of amylose-amylopectin ratio on gel properties. J. Cereal Sci. 13:1-13.
Lu, S.. Chen. L. N.. and Lii, C.Y. 1997. Correlations between the tine structure, physicochemical properties, and retrogradation ofamylopectins from Taiwan rice varieties. Cereal Chem. 74:34-39.
Manners, D. J. and Matheson, N. K. 1981. The fine structure of amylopectin. Carbohydr. Res. 90:99-110.
Manners, D. J. 1985. Some aspects of the structure of starch Cereal Food World 30:401.
Mciver, R. G., Axford, D. W. E., Colwell, K. H., and Elton, G. A. H. 1968. Kinectic study of the retrogradation of gelatinization starch. J. Sci. Food Agric. 19:560-563.
Miles, M. J., Morris V.J., and Ring, S. G. 1985a. Gelation of amylose. Carbohydr. Res. 135:257-269.
Millane R. P., BeMiller J. N. and Chandrasekaran R., 1989. Frontiers in carbohydrate research, 1 : food applications , Elsevier Applied Science, London.
Muhrbeck, P., Tellier, T. 1991. Determination of the phosphorylation of starch from native potato varies by 31P NMR. Starch. 43:25-27.
Nikuni, Z. 1969 Denpun and chori [starch and cookery] . Chorikagaku 2:6
Nikuni, Z. 1978. Studies on starch granules. Starch. 30:105-111.
Nilson, N. (1944). A photometric adaptation of the Somogyi method for the determination of glucose. J. Biol. Chem. 153:373.
Peleg, M. 1987. The basis of solid foods rheology. In: Food Texture. H. R. Moskowitz(Ed.) Marcel Dekker Inc. N.Y.
Perez, S., Imberty, A., and Raymond, P. 1990. Modeling of interactions of polysaccharide chains. Ch.17, in Computer Modeling of Carbohydrate Molecules. p. 281-299. A. D. French and J. W. Brady (Ed.), American Chemical Society.
Ring, S. G. 1985. Some studies on starch gelation. Starch 37:80.
Ring, S. G. 1987. Molecular interactions in aqueous solutions of the starch polysaccharides :a review. Food Hydrocolloids 2:321.
Ring, S. G. Colonna, P. I''Anson, K. J. Kalichevsky, M. T., Miles, M. J., Morris, V. J. and Orford, P. D. 1987. The gelation and crystallization of amylopectin. Carbohydr. Res. 162:277.
Robin, J. P., Mercier, C., Charbonniere, R., and Guilbot A. 1974. Lintnerized starches. Gel filtration and enzymatic studies of insoluble residues from prolonged acid treatment of potato starch. Cereal Chem. 51:389.
Shibanuma, K., Takeda, Y. and Hizukuri, S. 1994. Molecular structures of some wheat starches. Carbohydr. Res. 25:111
Suzuki, A., Takeda, Y., and Hizukuri, S. 1985. Relationship between tje molecular structure and retrogradation properties of tapioca, potato, and kuzu starches. J. Jpn. Soc. Starch Sci. 32:205.
Suzuki, A., Shibanuma, K., Takeda, Y., Abe, J. and Hizukuri, S. 1994. Structures and pasting properties of potato starches from Jaga Kids Purple’90 and Red’90. Oyo Toshitsu Kagaku. 41:425.
Svegmark, K., and Hermansson, A. M. 1990. Shear induced changes in the viscoelastic behavior of heat treat potato starch dispersions. Carbohydr. Polym. 14:29.
Takeda, Y., and Hizukuri, S. 1982. Location of phosphate groups in potato amylopectin. Carbohydr. Res. 102:321-327.
Takeda, Y., Tokunaga, N., Takeda C. and Hizukuri, S. 1986. Physicochemical properties of sweet potato starch. 38:345.
Takeda, Y., and Hizukuri, S. 1987. Structure of rice amylopectins with low and high affinities for iodine Carbohydr. Res. 168:79.
Takeda, Y., Shitaozono, T. and Hizukuri, S. 1988. Molecular structure of corn starch. Starch. 40:51.
Takeda, Y., Maruta, N., Hizukuri, S., and Juliano, B. 0. 1989a. Structures ofindica rice starches ( IR48 and IR64 ) having intermediate affinities for iodine. Carbohydr. Res. 187:287.
Takeda, Y., Takeda, C., Suzuki, A., and Hizukuri, S. 1989b Structure and properties of sago starches with low and high viscisities on amylography. J. Food Sci. 54:177-182.
Tang H., Ando H., Watanabe K., Takeda Y. and Mitsunaga T. 2001. Physicochemical properties and structure of large, medium and small granule starches in fractions ofnormal barley endosperm. Carbohydr. Res. 330: 241-248
Tester, R. F., and Morrison, W. R. 1990. Swelling and gelatinization of cereal starches. Starch/Starke. 27:69-71.
Tsai, S. S. 1984. Studies on the mucilage from yam tubers isolation and purification of mucilage. J. Chinese Agric. Chem. 22:88.
Tsai, M. L., Li, C. F., and Lii, C. Y. 1997. Effect of granular structure on the pasting behaviors of starches. Cereal Chem. 74:750-757.
Waniska, R. D., and Gomez, M. H. 1992. Dispersion behavior of starch. Food Technol. 7:110.
Zobel, H. F. 1964. X-ray analysis of starch granules. In: Method in carbohydrate chemistry. Vol.4. p.109.R. L. Whistler,(Ed.) Academic press, New York.
Zobel, H. F. 1988. Starch crystal transformation and their industrial importance. Starch 40:1.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔