(3.236.118.225) 您好!臺灣時間:2021/05/16 14:19
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:林思佑
研究生(外文):Su-Yu Lin
論文名稱:固定化暨培養方式對紅茶菇於培養期間主成分及微生物活性變化之影響
論文名稱(外文):Effect of Cellular Immobilization and Improved Culture Method On the Microbial Activity and Production of Major Metabolites During the Fermentation of Kombucha
指導教授:陳錦樹陳錦樹引用關係
指導教授(外文):Chin-Shuh Chen, Ph. D.
學位類別:碩士
校院名稱:國立中興大學
系所名稱:食品科學系
學門:農業科學學門
學類:食品科學類
論文種類:學術論文
論文出版年:2001
畢業學年度:89
語文別:中文
論文頁數:106
中文關鍵詞:紅茶菇固定化細胞震盪培養醋酸菌酵母菌細菌性纖維素溶氧量生物反應器
外文關鍵詞:tea fungusimmobilized cellagitation culturekombuchabacteria cellulosenovel bioreactor systemdissolved oxygenNa-alginate
相關次數:
  • 被引用被引用:5
  • 點閱點閱:492
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:2
紅茶菇(tea fungus或通稱kombucha)主要是由醋酸菌及酵母菌等至少二種以上微生物共生於含糖的紅茶中所形成的發酵體系,因含有醋酸及葡萄糖酸等多種有益人體健康的成分,是一種機能性保健飲料。本研究利用酵母菌Schizosaccharomyces pombe K-2與醋酸菌Acetobacter xylinum AL-01及Acetobacter aceti AL-02進行純菌培養製備紅茶菇。內容包括紅茶菇分離菌株之固定化條件,以及不同培養發法對其培養成分暨微生物活性之影響。
首先以不同濃度的膠體進行紅茶菇分離菌株的固定化暨培養試驗,發現以4%褐藻膠固定化紅茶菇之混合菌株,其在葡萄糖酸及纖維素等產量上皆較高,在維持菌體活性上效果也較明顯。而以固定化菌株進行紅茶菇之靜置培養,則會累積大量之葡萄糖及果糖,進而影響醋酸菌的生化代謝途徑,包括促進葡萄糖酸及纖維素產量,及抑制醋酸的產生。
震盪培養可增加培養系統的溶氧量,提高蔗糖利用率,同時在培養初期醋酸菌即快速生長,進而提高葡萄糖酸及纖維素產量。但高溶氧量卻阻礙酵母菌行酒精發酵,進而影響其後之醋酸產量。固定化菌體在震盪培養下,如醋酸菌之菌體密度並不如靜置培養者,但仍比未固定化菌體者有較佳之活性維持作用。
在使用一由主、付二個反應槽組成之改良式生物反應器以發酵生產紅茶菇方面,其主反應槽的發酵模式類似靜置培養,而副反應槽則與通氣培養(震盪培養)相近。於發酵過程中副反應槽藉攪拌及通氣而增加培養液的溶氧量,進而調節主反應槽之溶氧量,因而有促進蔗糖代謝速率,及增加葡萄糖酸及醋酸產量上之效果。
The tea fungus (commonly named as “kombucha”) is produced by the fermentation of black tea and sugar by a symbiotic culture of acetic acid bacteria and yeasts as two major microorganisms. The tea fungus broth has been claimed to be a prophylactic agent and to be beneficial to human health due to the presence of organic acids such as acetic acid and gluconic acid. The tea fungus prepared by using pure cultures of two acetic acid bacteria (A. xylinum AL-01 and A. aceti AL-02) and a yeast (Schizosaccharomyces pombe K-2) isolates as starter was used in this study, including effects of cellular immobilization, types of gel, and cultivation methods on the microbial activities and production of major metabolites.
As the tea fungus isolates were immobilized together by 4% Na-alginate, the production of both gluconic acid and cellulose were increased, and metabolic activities were preserved. While preparing the tea fungus by using the immobilized cells and was cultivated statically, both glucose and fructose accumulated in the fermentation broth, this in turn influenced the acetic acid bacteria and led to the greater production of gluconic acid and cellulose, and a decreased acetic acid production.
The dissolved oxygen (DO) concentration in the broth was increased for a shaking culture, and the invertase of yeast was thus increased, which in turn enhanced the production of both gluconic acid and cellulose. However, higher DO concentration could retard the alcohol fermentation by yeast, and acetic acid production thereafter. The cell density of acetic acid bacteria in the immobilized cells, and cultivated by shaking, was lower than that immobilized, but static cultivation. Besides, they were also characterized to have better metabolic activity than those in freely suspended cells.
A novel bioreactor system comprising of two reactors, one for fermentation (main reactor) and the other for agitation and aeration (satellite reactor) was used in order to improve the fermentation efficiency of tea fungus using pure cultures.
The fermentation patterns in main reactor behaved like those in static cultures, while those in satellite reactor were similar to the fermentation by shaking cultures. The DO concentration in the main reactor was eventually modulated via the increased DO concentration in satellite reactor, which in turn increased the hydrolysis ate of sucrose, and enhanced the production of both gluconic and acetic acids.
中文摘要………………………………………………………………..I
英文摘要………………………………………………………………..II
目錄……………………………………………………………………..IV
圖目錄………………………………………………………………….VI
表目錄………………………………………………………………IIX
壹、前言………………………………………………………………1
貳、文獻整理…………………………………………………………4
一、紅茶菇相關介紹………………………………………………..4
二、醋酸菌─Acetobacter xylinum………………………………….14
三、自然界中常見的酵母菌………………………………………..23
四、醋酸菌與酵母菌之間的關係…………………………………..23
五、紅茶菇純菌培養………………………………………………..24
六、震盪與靜置培養對紅茶菇之影響……………………………..25
七、固定化菌體技術………………………………………………..27
參、 材料與方法………………………………………………………30
一、實驗樣品………………………………………………………30
二、實驗菌株………………………………………………………30
三、培養基…………………………………………………………31
四、化學藥品………………………………………………………32
五、儀器設備………………………………………………………33
六、實驗方法………………………………………………………34
七、實驗流程………………………………………………………41
肆、 結果與討論………………………………………………………42
第一部分:紅茶菇分離菌株固定化條件之探討…………………..42
一、固定化膠體濃度暨種類對紅茶菇於培養期間主成分變化及微生物活性之影響………………………………………………42
(一)對酵母菌及醋酸菌數之影響…………………………42
(二)對醣類之影響…………………………………………46
(三)對酒精量變化之影響…………………………………50
(四)對有機酸量之影響……………………………………50
(五)對纖維素產量之影響…………………………………55
(六)pH值之變化…………………………………………..55
(七)溶氧量之變化…………………………………………58
第二部分:培養方式對紅茶菇主成分變化及微生物活性的影響…61
一、以震盪培養法製備紅茶菇於培養期間主成分及微生物活性之變化……………………………………………………………61
(一)對酵母菌及醋酸菌數之影響…………………………61
(二)對醣類之影響…………………………………………63
(三)對酒精量變化之影響…………………………………69
(四)對有機酸量之影響……………………………………72
(五)對纖維素產量之影響…………………………………74
(六)pH值之變化…………………………………………..77
(七)溶氧量之變化…………………………………………79
二、以改良式生物反應槽製備紅茶菇於培養期間主成分及微生物活性之變化……………………………………………………80
(一)對酵母菌及醋酸菌數之影響…………………………80
(二)對醣類之影響…………………………………………83
(三)對酒精量變化之影響…………………………………85
(四)對有機酸量之影響……………………………………89
(五)對纖維素產量之影響…………………………………91
(六)pH值之變化…………………………………………..94
(七)溶氧量之變化…………………………………………96
伍、結論………………………………………………………………..97
陸、參考文獻…………………………………………………………...99
中村俱康。1995。見直 酸 利用。食品 開發。30(4): 17-20。
寺田橙子、西村溫子。1976。紅茶 關 研究(予報)。市 學園短期大學自然科學研究會夕誌。10(1): 15-18。
李春銅。1976a。紅茶菇的科學原理與解析。萬里程書店。69及112頁。
李錦楓。1976b。關於健康飲料海寶(紅茶菇)的真相。食品工業。8(3):35-37。
林文祺。1998。紅茶菇之純粹培養暨固定化對其主成分變化與微生物活性之影響。80-96頁。國立中興大學食品科學研究所碩士論文。
施如妍。1999。不同菌源組合及添加物對紅茶菇純菌培養液中主成分的影響。36-126頁。國立中興大學食品科學研究所碩士論文。
陳錦樹、劉碧雲。1996。紅茶菇之衛生品質與白色念珠菌之殘存實驗。農林學報。46(1): 46-53。
彭鴻鈞。1997。培養基組成暨培養方式對紅茶菇主成分變化之影響。26-136頁。國立中興大學食品科學研究所碩士論文。
曾乙仁。1995。利用醋酸菌(Acetobacter xylinum)發酵鳳梨之生產細菌纖維素之研究。52-60頁。私立東海大學食品科學研究所碩士論文。
劉英俊。1994。酵素工程。231-264頁。再版。中央圖書出版社。
劉繼賢、許文浩、李福臨、黃國杰、張平平、廖啟成。1994。紅茶菇之微生物群的分離與鑑定。中華民國食品科學技術學會第二十四屆會員大會手冊。157頁。
劉碧雲。1996。紅茶菇之微生物品質及其製備過程中成分變化之研究。24-46頁。國立中興大學食品科學研究所碩士論文。
賴敏男。1976。紅茶菇的微生物及成分。食品工業。8(9): 45-49。
賴鳴鳳。1989。葡萄醋開放發酵之研究。35-84頁。國立中興大學食品科學研究所碩士論文。
賴麗安。2000。環境因子對以傳統移植及純菌培養法治被紅茶菇時關鍵酵素暨產物生合成之影響。123-136頁。國立中興大學食品科學研究所碩士論文。
蘇遠志,莊育梩,堇雪麗。1989。利用醋酸菌固定化細胞進行山梨糖生產之研究。中國農業化學會誌。27(1): 1-11。
Arashida, T., Ishino, T., Kai, A., Hatanaka, K., Akaike, T, Matsuzaki, K., Kaneko, Y. and Mimura, T. 1993. Biosybthesis of cellulose from culture media containing 13C-labeled glucoses as a carbon source. J. Carbohydr. Chem. 12(4Ɓ): 641-649.
Argueso, T. R. and Navarro, A. R. 1973. Gluconic acid-producing bacteria from honey bees and ripening honey. J. Gen. Microbiol. 76: 211-216.
Asai, T., Iizuka, H. and Komagata, K. 1964. The flagellation and taxonomy of genera gluconobacter and acetobacter with regerence to the existence of intermediate strains. J. Gen. Appl. Microbiol. 10(2): 95-125.
Blanc, P. J. 1996. Characterization of the tea fungus metabolites. Biotech. Lett. 18(2): 139-142.
Boenstroo, M. H., de Wit, J. C., Kusters, B. J. M. and R.mbouts, F. M. 1993. Inhibition of the growth of yeasts in fermented salads. Int. J. Food Microbiol. 17: 311-320.
Brown, R. M. Jr., Willison, J. H. M. and Richardaon, C. L. 1976. Cellulose biosynthesis in Acetobacter xylinum: Visualization of the site of synthesis and direct measurement of the in vivo process. Proc. Natl. Acad. Sci. U.S.A. 73(12): 4565-4569.
Buchanan, R. E. and Gibbons, N. E. 1984. Family VI. Acetobacteraceae in “Bergey’s Manual of Systematic Bacteriology vol. 1.” 9thed. J. G. Holt(ed.), Pp. 267-278. The Williams and Wilkins Co., Baltimore.
Cancalon, P. F. and Parish, M. E. 1995. Changes in the chemical composition of orange juice during growth of Saccharomyces cerevisiae and Gluconobacter oxydans. Food Microbiol. 12: 117-124.
Choi, J. W., Yoo, D. I., Lee, W. H. and Pedersen, H. 1996. Selective adsorption of plant metabolite on encapsulated adsorbent :Local thermodynamic equilibrium model. J. Ferm. Bio. 81(1): 47-54.
Colowick, S. P. and Kaplan, N. O. 1987. Methods in enzymology. Acadmic Press, New York. 135b: 173-197.
Deak, T. and Beuchat, L. R. 1993. Yeasts associated with fruit juice concentrates. J. Food Protec. 56(9): 777-782.
De Wulf, P., Joris, K. and Vanamme, E. J. 1996. Pathways of carbon catabolism in Acetobacter xylinum. J. Chem. Tech. Biotechnol. 67: 376.
Drysdale, G. S. and Fleet, G. H. 1988. Acetic acid bacteria in winemaking: a review. Am. J. Enol. Vitic. 39(2): 143-154.
Drysdale, G. S. and Fleet, G. H. 1989a. The effect of acetic acid bacteria upon the growth and metabolism of yeasts during the fermentation of grape juice. J. Appl. Bacteriol. 67: 471-481.
Drysdale, G. S. and Fleet, G. H. 1989b. The growth and survival of acetic acid bacteria in wines at different concentrations of oxygen. Am. J. Enol. Vitic. 40(2): 99-105.
Dufresne, C. and Farnworth, E. 2000. Tea, Kombucha, and health: a review. Food Resr. Intern. 33: 409-421.
Dudman, W. F. 1959. Cellulose production by Acetobacter acetigenum and other Acetoacter spp. J. Gen. Microbiol. 21: 327-337.
Dziezak, J. D. 1990. Acidulants: Ingredients that do more than meet the acid test. Food Tech. 44(1): 76-83.
Embuscado, M. E., Marks, J. S. and Bemiller, J. N. 1994. Bacterial cellulose. I. Factors affecting the production of cellulose by Acetobacter xylinum. Food Hydrocoll. 8(5): 407-418.
Everson, R. G. and Colvin, J. R. 1966. Rearrangement of glucose molecules during synthesis of bacterial cellulose. Can. J. Biochem. 44: 1567-1569.
Fasching, R. 1985a. Part I, The tea fungus kombucha in “Tea Fungus Kombucha.” 9thed. Pp.13-14. Ennsthaler Verlag, Steyr.
Fasching, R. 1985b. Part VI, Reports on Therapeutic Success in “Tea Fungus Kombucha.” 9thed. Pp.39-48. Ennsthaler Verlag, Steyr.
Fontana, J. D., Franco, V. C., De Souza, S. J., Lyra I. N. and De Souza, A. M. 1991. Nature of plant stimulators in the production of Acetobacter xylinum (tea fungus) biofilm used in skin therapy. Appl. Biochem. and Biotech. 28: 341-351.
Frank, G. W. 1995a. Personal experience in “Kombucha: Healthy beverage and natural remedy from the Far East.” 9thed. Pp.128-142. Ennsthaler Verlag, Steyr.
Frank, G. W. 1998. Does Kombucha have any side effects? http://bawue.de/~kombucha/benefits.htm.
Frebortova, J., Matsushita, K. and Adachi, O. 1997. Effect of growth substrates on formation of alcohol dehydrogenase in Acetobacter methanolicus and Acetobacter acetii. J. Ferment. Bioeng. 83(1): 21-25.
Fukaya, M., Park, Y. S. and Toda, K. 1992. Improvement of acetic acid fermentation by molecular breeding and process development. J. Appl. Bacteriol. 73: 447-454.
Full Circle Press. 1998. Kombucha tea culture — The ancient rejuvenating health drink. http://www.h2olily.com/~insect/ kombucha2/html.
Gagnaire, D. Y. and Taravel, F. R. 1980. Biosynthese de cellulse bacterienne a partir de D-glucose uniformement enrichi en 13C. Eur. J. Biochem. 103: 133-143.
Gilliland R. B. and Lacey, J. P. 1964. Lethal action by an Acetobacter on yeasts. Nature 202: 727-728.
Gromet, Z., Schramm, M. and Hestrin, S. 1957. Synthesis of cellulose by Acetobacter xylinum IV. Enzyme systems present in a crude extract of glucose-grown cells. Biochem. J. 67: 679-689.
Hestrin, S. and Schramm, M. 1954. Synthesis of cellulose biosynthesis by Acetobacter xylinum. I. Micromethod for the determination of cellulose. Biochem. J. 56: 2259-2262.
Hiroshi, H., Satoshi, M., Tomoaki, W., Senzo, S., Fusao, U., Masao, D. and Masao, B. 1978. microbial flora and organic acid contents in tea fungus. 19(3): 273-281.
Hoffmann, N. 1998. The ubiquitous co-enzyme UDPGlucuronic acid. http://www.stolaf.edu/people/hoffmen/glucuron.htm.
Hwang, W. J., Yang, Y. K., Hwang, J. K., Pyun, Y. R. and Kim, Y. S. 1999. Effects of pH and dissolved oxygen on cellulose production by Acetobacter xylinum BRC5 in agitated culture. J. Biosc. Bioeng. 88(2): 183-188.
Kai, A., Arashida, T., Hatanaka, K., Adaike, T., Matsuzaki, K., Mimura, T. and Kaneko, Y. 1994. Analysis of the biosynthetic process of cellulose and curdlan using 13C-labeled glucoses. Carbohydr. Polym. 23: 235-239.
Koburger, J. A. and Marth, E. H. 1984. Yeasts and molds. In “Compendium of Methods for the Microbiological Examination of Foods”, 2nd ed., M. L. Speck(ed.), p. 197-202, American Public Health Association, Inc. Washington, D. C.
Kondo, T. and Knodo, M. 1995. Efficient production of acetic acid from glucose in a mixed culture of Zymomonas mogilis and Acetobacter sp. J. Ferment. Bioeng. 81:42-46.
Krisch, J. and Szajani, B. 1997. Ethanol and acetic acid tolerance in free and immobilized cells of Saccharomyces cerevisiae and Acetobacter aceti. Biotechnol. Lett. 19(6): 525-528.
Liu, C. H., Hsu, W. H., Lee, F. L. and Liao, C. C. 1996. The isolation and identification of microbes from a fermented tea beverage, Haipao, and their interactions during Haipao fermentation. Food Microbiol. 13: 407-415.
Marteau P. and Rambaud, J. C. 1993. Potential of using lactic bacteria for therapy and immunomodulation in man. FEMS Microbiol. Rev. 12: 207-220.
Matsuda, T., Yano, T., Maruyama A. and Kumagai, H. 1994. Antimicrobial activities of organic acids determined by minimum inhibitory concentrations at different pH range from 4.0 to 7.0. Nippon Shokuhin Kogyo Gakkaishi (Journal of the Japanese Society of Food Science Technology). 41: 687-702.
Mayser, P., Fromme, S., Leitzmann, C. and Grunder, K. 1995. The yeast spectrum of the “tea fungus kombucha”. Mycoses. 38: 289-295.
Ohmori, S., Masai, H., Arima, K. and Beppu, T. 1980. Isolation and identification of acetic acid bacteria for submerged acetic acid fermentation at high temperature. Agric. Biol. Chem. 44(12): 2901-2906.
Phan, T. G., Estell, J., Duggin, G., Beer, I., Smith D. and Ferson, M. J. 1998. Lead poisoning from drinking Kombucha tea brewed in a ceramic pot. Medic. J. Austr. 169: 644-646.
Perron, A. O., Patterson J. A. and Yanofsky, N. N. 1995. Kombucha “mushroom” hepatotoxicity. Ann. Emerg. Medic. 26: 660-661.
Pryor, B. and Holst, S. 1995. History and Research in ”Kombucha phenomenon: The health drink sweeping America, The Tea Mushroom Handbook.” 1sted. Pp.86-94. Sierra Sunrise Publishing Inc. West Hills, CA.
Reiss, J. 1987. Der teepilz und seine stoffwechselprodukte. Dtsch. Labensm. Rdsch. 83: 286-290.
Reiss, J. 1994. Influence of different sugars on the metabolism of the tea fungus. Z. Labensm. Unters. Forsch. 198: 258-261.
Roche, J. 1998. The history and spread of Kombucha. http://w3.triv. com~kombu/roche.html.
Sadjadi, J. 1998. Cutaneous anthrax associated with the Kombucha “mushroom” in Iran(letter). J. Am. Medic. Assoc. 280: 1567-1568.
Schramm, M. and Hestrin, S. 1954. Factors affecting production of cellulose at the air/liquid interface of a culture of Acetobacter xylinum. J. Gen. Miceobiol. 11:123-129.
Schramm, M., Gromet, Z. and Hestrin, S. 1957. Role of hexose phosphate in synthesis of cellulose by Acetobacter xylinum. Nature. 179: 28-29.
Sreeramulu, G., Zhu Y. and Knol, W. 2000. Kombucha fermentation and its antimicrobial activity. J. Agric. Food Chem. 48: 2589-2594.
Srinivasan, R., Smolinske S. and Greenbaum, D. 1997. Probable gastrointestinal toxicity of kombucha tea. J. Gen. Inter. Medic. 12: 643-644.
Stadler-Szoke, A., Nyeste, L. and Hollo, J. 1980. Studies on the factors affecting gluconic acid and 5-ketogluconic acid formation by Acetobacter. Acta Aliment. 9: 155-172.
Steinkraus, K. H., Shapiro, K. B., Hotchkiss, J. H. and Mortlock, R. P. 1996. Investigations into the antibiotic activity of tea fungus/kombucha beverage. Acta Biotechnol. 16: 199-205.
Toda, K., Asakura, T., Fukaya, M., Entani, E. and Kawamura, Y. 1997. Cellulose production by acetic acid-resistant Acetobacter xylinum. J. Ferment. Bioeng. 84(3): 228-231.
Tonouchi, N., Tsuchida, T., Yoshinaga, F. and Beppu, T. 1996. Characterization of the biosynthetic pathway of cellulose from glucose and fructose in Acetobacter xylinum. Biosci. Biotech. Biochem. 60(8): 1377-1379.
Toyosaki, H., Naritomi, T., Seto, A., Matsuoka, M., Tsuchida, T. and Yoshinaga, F. 1995. Screening of bacterial cellulose-producing Acetobacter strains suitable for agitated culture. Biosci. Biotech. Biochem. 59(8): 1498-1502.
Toyosaki, H., Naritomi, T., Seto, A., Matsuoka, M., Tsuchida, T. and Yoshinaga, F. 1997. Abstr. Annu. Meet. Japan. Soc. Biosci. Biotech. Agrochem. p. 334.
Valla, S. and Kjosbakken, J. 1982. Cellulose-negative muatants of Acetobacter xylinum. J. Gen. Micro. 128: 1401-1408.
Vaughn, R. H. 1942. The acetic acid bacteria. Wallerstein lab. 5: 5-26.
Williams, W. S. and Cannon, R. E. 1989. Alternative environmental roles for cellulose produced by Acetobacter xylinum. Appl. Enviro Microbiol. 55: 2448:2452.
White, G. A. and Wang, C. H. 1964. The dissimilation of glucoe and gluconate by Acetobacter xylinum: 1. The origin and the fate of triose phosphate. Biochem. J. 90: 408-433.
Yang, Y. K., Park, S. H., Hwang, J. W., Pyun, Y. R. and Kim, Y. S. 1998. Cellulose production by Acetobacter xylinum BRC5 under agitated condition. J. Ferm. Bioeng. 85(3): 312-317.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top