(3.236.214.19) 您好!臺灣時間:2021/05/06 20:45
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:洪敏洳
研究生(外文):Min-Ju Hung
論文名稱:仙人掌桿菌於米食系統中生長預測模式之建立
論文名稱(外文):Development of predictive models for growth of Bacillus cereus in rice system
指導教授:方繼方繼引用關係
指導教授(外文):Tony J. Fang, Ph. D.
學位類別:碩士
校院名稱:國立中興大學
系所名稱:食品科學系
學門:農業科學學門
學類:食品科學類
論文種類:學術論文
論文出版年:2001
畢業學年度:89
語文別:英文
論文頁數:102
中文關鍵詞:仙人掌桿菌預測模式
外文關鍵詞:Bacillus cereusPredictive model
相關次數:
  • 被引用被引用:1
  • 點閱點閱:328
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究之目的在於建立數學模式以預測仙人掌桿菌於培養基系統及米飯系統中之生長情形。分別於不同溫度下(培養基系統:10, 14, 18, 22.5, 25, 30, 34.5及37℃;米飯系統12, 18, 24, 30, 36及42℃)之貯存後,利用修飾後的Gompertz 模式配適該菌生長曲線之實驗數據,並估計其生長參數值。將所得生長參數如最大比生長速率(μm)及遲滯期(λ)分別建立與溫度之關係:比生長速率以Ratkowsky及Zwietering模式描述,遲滯期則以Adair及Smith模式描述﹔所選用模式之適用性利用迴歸係數(R2)、散佈圖及殘差圖等方法驗證之。
於培養基及食品系統中所得各項實驗數據利用Gompertz模式配適,其R2值平均皆可達0.98以上。在最大比生長速率與溫度之描述中,以各模式所得之R2值皆大於0.92,皆能有適切的描述。關於PMP系統之探討,發現預測之μm值於培養基系統中37℃及米飯系統42℃中會高於實驗值,其餘溫度則皆比實驗值小。而在遲滯期方面,PMP所得之預測值幾乎都大於實驗值,即顯示在食品安全的考量上,此PMP系統所得之預測值並不適用。
另外,利用反應曲面法及Adams模式來描述仙人掌桿菌之生長參數與米飯中仙人掌桿菌影響因子之關係模式,實驗因子階層範圍為:溫度18∼42℃﹔醋酸濃度0∼0.50μg/100g及蔗糖濃度0∼12.5%。生長曲線以修飾後之Gompertz模式進行非線性迴歸,求得最大比生長速率及生長遲滯期等反應性狀後,以SAS程式進行分析,並將結果以繪圖軟體繪圖(Surfer Mapping)進行探討。
結果顯示,只有溫度對最大比生長速率與遲滯期有顯著性影響(p<0.01),且欠合度皆為顯著,表示本研究所得之反應曲面模式並不適當。而以Adams模式描述所得之R2值皆為0.99以上,即此模式可適切地描述溫度與pH值對最大比生長速率之影響,值得做進一步之研究。
Mathematical models which allow the prediction of Bacillus cereus growth in both broth and rice system were investigated in this study. Growth curve of B. cereus were obtained at different temperatures (broth system: 10, 14, 18, 22.5, 25, 30, 34.5 and 37℃; rice system: 12, 18, 24, 30, 36 and 42℃). The modified Gompertz model was applied to fit with each of the experimental curves at conditions mentioned above. The variations of the parameters including specific growth rate (μm) and lag time (λ) with temperature were then modeled. The variation of μm can be described by Ratkowsky model and Zwietering model. On the other hand, Adair model and Smith model were used to describe the variation ofλ. The various models were compared by scatter plot, residual plot and R2.
The result showed that the mean R2 values of Gompertz model were above 0.98. In modeling the effect of temperature on μm and λ, the R2 values were all above 0.92.When the PMP (Pathogen Modelling Program) system was applied to this investigation, it was found that the predicted values of μm were lower than the observed values in both systems, except for in broth system at 37℃ and in rice system at 42℃. On the other hand, the predicted values of λ were almost higher than the observed value. This implied that the PMP system should not be relied upon as the sole determined of the food product’s safety.
RSM (Response surface methodology) and Adams model were used to determine the effects of temperature, acetic acid concentration and sucrose concentration on the growth of B. cereus in rice system. The range of experimental variables of temperature, acetic acid concentration and sucrose concentration were 18~42℃, 0~0.50μg/100g and 0~12.5%, respectively. Growth curve was fit by using nonlinear regression of Gompertz equation, growth parameters of μm and λwere obtained as the responses. The responses were analyzed by response surface regression (RSREG) of SAS program and were plotted using Surfer Mapping software. The results indicated that only the effects of temperature was significant to the responses of μm and λ (p<0.01), and the test for lack of fit indicated that the response surface model we used in this experiment was not suitable. On the other hand, The R2 values of Adams model were both above 0.99, which indicates that the model is suitable for describing the effect of temperature and pH on the growth rate of B. cereus.
中文摘要
Abstract
壹、 前言
貳、 文獻整理
一、 米製食品中之微生物
二、 仙人掌桿菌(Bacillus cereus)
(一)、 仙人掌桿菌(B. cereus)之一般特性
(二)、 仙人掌桿菌與食品中毒
三、 微生物預測模式
(一)、 簡介
(二)、 模式的分類
(三)、 生長曲線之描述以求得生長參數
(四)、 建立食品系統中內在及外在因子影響微生物生長之模式
四、 反應曲面法 (Response surface methodology, RSM)
(一)、 定義
(二)、 步驟
參、 材料與方法
一、 實驗材料
(一)、 菌株
(二)、 米飯
(三)、 培養基
(四)、 藥品
(五)、 器材與儀器
(六)、 電腦套裝軟體
二、 實驗方法
(一)、 菌株之活化
(二)、 樣品之製備
(三)、 有機酸之製備
(四)、 實驗設計
(五)、 RSM階層(level)之選取
(六)、 菌數之測定
三、 生長曲線之描述
四、 生長參數與溫度之描述
(一)、 描述最大比生長速率與溫度關係之模式
(二)、 描述遲滯期與溫度關係之模式
五、 驗證模式之適用性
(一)、 散佈圖
(二)、 殘差分布圖
六、 Pathogen Modeling Program (PMP)程式中預測值之獲得
七、 建立生長參數與食品中仙人掌桿菌影響因子之關係模式
(一)、 以反應曲面法探討
(二)、 以Adams model探討
肆、 結果與討論
一、 生長曲線之描述以獲得生長參數
(一)、 仙人掌桿菌於培養基系統中之生長曲線
(二)、 仙人掌桿菌於米飯食品系統中之生長曲線
二、 最大比生長速率與溫度關係之描述
三、 遲滯期與溫度關係之描述
四、 驗證
(一)、 散佈圖
(二)、 殘差分析圖
五、 病原菌模式之適用性
六、 建立生長參數與食品中各因子之關係
(一)、 以反應曲面法探討食品中各種因子
(二)、 以Adams model描述最大比生長參數與環境因子間之關係
伍、 結論
陸、 未來展望
柒、 參考文獻
方繼、危貴金、廖佳瑋、洪敏洳、王姿惠。2000。18℃即食產品微生物品質之評估及生長預測模式之建立。行政院衛生署八十八年下半年及八十九年度科技研究發展計畫。
任志正、傅敏琇、呂美玲。1997。18℃恆溫盒餐製程微生物控制。食品科學。24(1):68-74。
杜宇欣。1995。微生物預估模式在食品工業上的應用。食品工業。27(7): 35-45。
沈明來。1999。試驗設計學。九州圖書文物有限公司,台北。pp. 529-530.
周正俊、劉成章、李秀玲、劉廷英。1987。米飯中之微生物品質及一些食品中毒細菌之生長。中國農業化學會誌。25(4):460-468。
陳清泉。1993。最適化實驗設計在食品工業產品開發上的應用。食品工業。25(2): 50-62。
錢安增、詹榮弘、邱再預。1989。米飯製品仙人掌桿菌、金黃色葡萄球菌、大腸桿菌群及大腸桿菌之調查。藥物食品檢驗局調查研究年報。17:131-134。
Adair, C., D. C. Kilsby and P. T. Whittall. 1989. Comparison of the schoolfield (non-linear Arrhenius) model and the square root model for predicting bacterial growth in foods. Food Microbiol. 6: 7-18.
Adams A. M., L. L. Leja, K. Jinneman, J. Beeh, G. A. Yuen and M. M. Wekell. 1994. Anisakid parasites, Staphylococcus aureus and Bacillus cereus in suishi and sashimi from Seattle area restaurants. J. Food Prot. 57(4): 311-317.
Adams, M. R., C. L. Easter and M. C. Easter. 1991. Modelling the effect of pH, acidulants and temperature on the growth rate of Yersinia enterocolitica. J. Appl. Bacteriol. 71, 65-71.
Arrhenius, S., 1889. Über die Reaktiongeschwindigkeit bei der Inversion von Rohrzucker durch Säuren. Z. Phys. Chem. 4: 226-248.
Arribas G. and J. M. Kramer. 1990. The effect of glucose, starch, and pH on growth, enterotoxin and haemolysin production by strains of Bacillus cereus associated with food poisoning and non-gastrointestinal infection. Int. J. Food Microbiol. 11: 21-34.
Baker, J. M. and M. W. Griffiths. 1993. Predictive modeling of psychrotrophic Bacillus cereus. J. Food Prot. 56: 684-688.
Baranyi, J., T. A. Robert and P. J. Mcculture. 1993. A non-autonomous differential equation to model bacterial growth. Food Microbiol. 10: 43-49.
Bělehrádek, J., 1930. Temperature coefficients in biology. Biol. Rev. Biol. Proc. Camb. Phil. Soc. 5: 30-60.
Benedict, R. C. Partridge, D. Wells and R. L. Bunchanan. 1993. Bacillus cereus: aerobic growth kinetics. J. Food Prot. 56: 211-214.
Bhaduri, S. P. W. Smith, S. A., C. O. Turner-Jones, J. L. Smith, B. S. Marmer, R. L. Buchanan, L. L. Zaika and A. C. Williams. 1991. Thermal destruction of Listeria monocytogenes in liver sausage slurry. Food Microbiol. 8: 75-78.
Blakey, L. J. and F. G. Priest. 1979. The occurrence of Bacillus cereus in some dried food including pulses and cereals. J. Bacteriol. 48: 294.
Buchanan R. L., J. L. Smith, C. Mccolgan, B. S. Marmer, M. Golden and B. Dell. 1993. Response surface models for the effects of temperature, pH, sodium chlocride, and sodium nitrite on the aerobic and anaerobic growth of Staphylococcus aureus 196E. J. Food Safety. 13: 159-175.
Buchanan, R. L. 1991. Using spreadsheet software for predicted microbiology applications. J. Food Safety. 11: 123-134.
Buchanan, R. L. 1993. Developing and distributing user-friendly application software. J. Ind. Microbiol. 12: 251-255.
Buchanan, R. L. and L. A. Klawitter. 1992. The effect of incubation temperature, initial pH, and sodium chloride on the growth kinetics of Escherchia coli O157:H7. Food Microbiol. 9: 185-196.
Buchanan, R. L., and G. Phillips. 1990. Response surface model for predicting the effects of temperature, pH, sodium chloride content, sodium nitrite concentration and atmosphere on the growth of Listeria monocytogenes. J. Food Prot. 53(5): 370-376.
Chandler, R. E. and T. A. McMeekin, 1985a. Temperature function integration and the prediction of the shelf—life of milk. Aust. J. Dairy Technol. 40: 10-13.
Chandler, R. E. and T. A. McMeekin, 1985b. Temperature function integration and its realationship to the spoilage of pasteurized, homogenized milk. Aust. J. Dairy Technol. 40: 37-41.
Chandler, R. E. and T. A. McMeekin, 1989. Modelling the growth response of Staphylococcus xylosus to change in temperature and glycerol concentration/water activity. J. Appl. Bacteriol. 67: 71-76.
Chroin E., D. Thuault, J.-T. Cleret and C.-M. Bourgeois. 1997. Modelling Bacillus cereus growth. Int. J. Food Microbiol. 38: 229-234.
Chung K. T. and H. L. Sun. 1986. Distribution and characteristics of Bacillus cereus isolated from rice in Taiwan. J. Food Sci. 51: 1208-1212.
Cochran, E. G. and G. M. Cox. 1957. Experimental design. John Wiley & Sons, Inc., New York. pp. 1-26.
Coghill, D. and H. S. Juffs. 1979. Incidence of psychrotrophic sporeforming bacterial in pasteurized milk and cream producteds and effect of temperature on their growth. Aust J. Dairy Technol. 34: 150-153.
Dzizak, J. D. 1990. Taking the gamble out of product developmental. Food Tech. 44(6): 110, 112-117.
Eifert J. D., C. R. Hackney, M. D. Pierson, S. E. Duncan and W. N. Eigel. 1997. Acetic, lactic, and hydrochloric acid effects on Staphylococcus aureus 196E growth based on a predictive model. J. Food Sci. 62(1): 174-178.
Fermanian, C., J. M. Fremy and C. Lahellec. 1993. Bacillus cereus pathogenicity: a review. J. Rapid Methods and Automat. Microbial. 2: 83-134.
Fu. B., P. S. Taoukis and T. P. Labuza. 1991. Predictive microbiology for monitoring spoilage of dairy products with time-temperature integrators. J. Food Sci. 56: 1209-1215.
Giannuzzi L., E. Contreras, and N. Zaritzky. 1999. Modeling the aerobic growth and decline of Staphyolococcus aureus as affected by pH and potassium sorbate concentration. J. Food Prot.62(4): 356-362.
Giannuzzi, L., A. Pinotti and N. Zaritzky. 1998. Methematical modeling of microbial growth in packaged refrigerated beef stored at different emperature. Int. J. Food Microbiol. 39: 101-110.
Gibson, A. M. and A. D. Hocking. 1997. Advances in the predictive modeling of fungal growth in food. Trends Food Sci. Technol. 8: 353-358.
Gibson, A. M., N. Bratchell and T. A. Robert. 1987. The effect of sodium chloride and temperature on the rate and extent of growth of Clostridium botulinum type A in pasteurized pork slurry. J. Appl. Bacteriol. 62: 479-490.
Gilbert, R. J. and A. J. Taylor. 1975. Outbreaks of Bacillus cereus food poisioning in Great Britain. Zentrablatt Bakteriol. I. Ref. 242: 163.
Goepfert, J. M., W. M. Spira and H. U. Kim. 1972. Bacillus cerus: food poisioning organism. A review. J. Milk Food Technol. 35: 213-227.
Granum P. E. 1994. Bacillus cereus and its toxins. J. Appl. Bacteriol. Symposium supplement. 76: 61S-66S.
Hauge, S. 1950. Bacillus cereus as a cause of food poisoning. Nord. Hyg. Tigskr. 31: 189.
Jay, J.. 1996. Modern Food Microbiology, 5th edition, Chapman and Hall, New York, p. 661.
Johnson, K. M., C. L. Nelson and F. F. Busta. 1983. Influence of temperature on germination and growth of spores of emetic and diarrheal strains of Bacillus cereus in a broth medium and in rice. J. Food. Sci. 48: 286.
King. A-E., H-J. Lin. 1995. Studies on the effect of protections on Lactobacillus acidophilus strain dehydrated under controlled low-temperature vacuum dehydration and freeze-drying by using response surface methodology. J. Sci. Food Agric. 68: 191-196.
Labuza, T. P. 1984. Application of chemical kinetics to deterioration of foods. J. Chem. Edu. 61: 348-353.
Labuza, T. P. and B. Fu. 1993. Growth kinetics for shelf-life prediction: theory and practice. J. Ind. Microbiol. 12: 309-323.
Labuza, T. P. and D. Riboh. 1982. Theory and application of Arrhenius kinetics to the prediction of nutrient losses in foods. Food Technol. 36: 66-74.
Labuza, T. P., B. Fu and P. S. Taoukis. 1992. Prediction of shelf life and safety of minimally processed CAP/MAP chilled foods: a review. J. Food Prot. 55: 743-750.
Li, K.-Y. and J. A. Torres. 1993. Microbial growth estimation in liquid media exposed to temperature fluctuation. J. Food Sci. 58(3): 644-648.
Mackey, B. M., and A. L. Kerridge. 1988. The effect of incubation temperature and inoculum size on growth of Salmonellae in minced beef. Int. J. Food Microbiol. 6: 57-65.
Manu-Tawiah, W., Myers, D. J., Olson, D. G. and Molins, R. A. 1993. Survival and growth of Listeria monocytogenes and Yersinia enterocolitica in pork chops packaged under modified gas atmospheres. J. Food Sci. 58: 475-479.
McMeekin, T. A., R. E. Chandler, P. E. Doe, J. Olley, S. Putro and D. A. Ratkowsky. 1987. Model for combined effect of temperature and salt of Staphylococcus xylosus. J. Appl. Bacteriol. 62: 543-550.
McMeekin, T. A., T. Ross and J. Olley. 1992. Application of predictive microbiology to assure the quality and safety of fish and fish products. Int. J. Food Microbiol. 15:13-32.
Midura, T. M., R. Wood and A. R. Leonard. 1970. Outbreak of food poisioningcaused by Bacillus. Public Health Rep. 85: 45.
Monod, J. 1949. The growth of bacterial cultures. Annu.Rev. Microbiol. 3: 371-394.
Mortimer, P. R. and G. McCann. 1974. Food poisioning espisodes associated with Bacillus cereus in fried rice. Lancet 1: 4043.
Mossel, D. A. A., M. J. Koopman and E. Jongerius. 1967. Enumeration of Bacillus cereus in foods. Appl. Microbiol. 15: 650-653.
Neter, J., M. H. Kutner, C. J. Nachtsheim and W. Wasserman. 1996. Applied linear statistical model. 4th. Edithion Time Mirror Higher Education Group Inc., pp. 531-555.
Neumeyer, K., T. Ross, G. Thomson and T. A. McMeekin. 1997. Validation of a model describing the effects of temperature and water activity on the growth of psychrotrophic pseudomonads. Int. J. Food Microbiol. 38: 55-63.
Phillips, J. D. and M. W. Griffiths. 1987. The relation between temperature and growth of bacteria in dairy products. Food Microbiol. 41: 59-72.
Pooni, G. S. and G. C. Mead. 1984. Prospective use of temperature function integration for predicting the shelf life of non-frozen poultry meat products. Food Microbiol. 1: 67-78.
Presser K. A., T. Ross and D. A. Ratkowsky. 1998. Modelling the growth limits (growth/no growth interface) of Escherichia coli as a function of temperature, pH, lactic acid concentration, and water activity. Appl. Environ. Microbiol. 64(5): 1773-1779.
Raevuory, M. and C. Genigeorgis. 1975. Effect of pH and sodium chloride on growth of Bacillus cereus in laboratory media and certain food. Appl. Microbiol. 26: 68-73.
Rajkowski K.T. and E. M. Mikolajcik. 1987. Characteristics of selected strains of Bacillus cereus. J. Food Prot. 50: 199-205.
Ratkowsky, D. A., J. Olley, T. A. McMeekin, A. Ball. 1982. Relationship between temperature and growth rate of bacterial culture. J. Bacteriol. 149: 1-5.
Ratkowsky, D. A., R. K. Lowry, T. A. McMeekim, A. N. Stokes, and R. E. Chandler. 1983. Model for bacterial culture growth rate throughout the entire biokinetic temperature range. J. Bacteriol. 154: 1222-1226.
Ross T. 1993. Bělehrádek-type models. J. Ind. Microbiol. 12: 180-189.
Ross, T. 1996. Indices for performance evaluation of predictive models in food microbiology. J. Appl. Bacteriol. 81: 501-508.
Schmidt, S. K.. 1992. Models for studying the population ecology of microorganisms in natural systems. In: Modelling the Metabolic and Physiologic Activities of Microorganisms, Wiley, New York, NY, pp. 31-59.
Shinagawa K., N. Kunita, Y. Sasaki and H. Okamoto. 1979. Biochemical characteristics and heat tolerance of strains of Bacillus cereus isolated from uncooked and cooked rice after food poisoning outbreaks. J. Food Hyg. Soc. Japan, 20: 431-436.
Standard, C. J., A. P. Williams. And P. A. Gibbs. 1985. Temperature growth relationships for psychrotrophic food spoilage bacteria. Food Microbiol. 2: 155-162.
Sutherland, A. D. and A. M. Limond. 1993. Influence of pH and sugars on the growth and production of diarrhoeagenic toxin by Bacillus cereus. J. Dairy Res. 60: 575-580.
Sutherland, J. P., A. J. Bayliss, D. S. Braxyton and A. L. Beaumont. 1997. Predictive modeling of Escherichia coli O157:H7: Inclusion carbon dioxide as a fourth factor in a pre-existing model. Int. J. Food Microbiol. 37: 113-120
Van Netten P., A. P. van de Moosdijk, van Hoensel, D. A. A. Mossel and I. Perales. 1989. Psychrotrophic strains of Bacillus cereus producing enterotoxin. J. Appl. Bacteriol. 69: 73-79.
Walls I. and V. N. Scott. 1997. Validation of predictive mathematical models describing the growth of Listeria monocytogenes. J. Food Prot. 60(9): 1142-1145.
Whiting, R. C. and R. L. Buchanan. 1993. A classification of models for predictive microbiology. Food Microbiol. 10: 175-177.
Wijtzes, T., P. J. McClure, M. H. Zwietering and T. A. Roberts. 1993. Modelling bacterial growth of Listeria monocytogenes as a function of water activity, pH and temperature. Int. J. Food Microbiol. 18: 139-149.
Wimptheimar, L., N. S. Altman and J. H. Hotchkiss. 1990. Growths of Listerua monocytogenes Scott A serotype 4 and competitive spoilage organisms in raw chicken packaged under modified atmosphere and in air. Int. J. Food Microbiol. 11: 205.
Wong H. C., M. H. Chang and J. Y. Fan. 1988. Incidence and characterization of Bacillus cereus isolates contaminating dairy products. Appl. Environ. Microbiol. 54(3): 699-702.
Zwietering, M. H., H. G. A. M. Cuppers, J. C. de Wit and K. van’t Reit. 1994. Evaluation of data transformation and valuation of a model for the effect of temperature on bacterial growth. Appl. Environ. Microbiol. 60(1): 195-203.
Zwietering, M. H., I. Jongenburger, B. E. Hasenack, and K. Van’T Riet. 1990. Modelling of the bacterial growth curve. Appl. Environ. Microbiol. 56: 1875-1881.
Zwietering, M. H., J. C. de Wit and S. Notermans. 1996. Application of predictive microbiology to estimate the number of Bacillus cereus in pasteurized milk at point of consumption. Int. J. Food Microbiol. 30: 55-70.
Zwietering, M. H., J. T. de Koos, B. E. Hasenack, J. C. de Wit and K. Van’T Riet. 1991. Modelling of bacterial growth as a function of temperature. Appl. Environ. Microbiol. 57(4): 1094-1101.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔