(3.230.154.160) 您好!臺灣時間:2021/05/07 23:58
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

: 
twitterline
研究生:洪千雅
研究生(外文):Chien-Ya Hung
論文名稱:仙草抗氧化機能性之研究
論文名稱(外文):Studies on Antioxidant functionality of Hsian-tsao (Mesona procumbens Hemsl.)
指導教授:顏國欽顏國欽引用關係
指導教授(外文):Gow-Chin Yen
學位類別:博士
校院名稱:國立中興大學
系所名稱:食品科學系
學門:農業科學學門
學類:食品科學類
論文種類:學術論文
論文出版年:2001
畢業學年度:89
語文別:中文
論文頁數:211
中文關鍵詞:仙草抗氧化性活性氧與自由基人類肝細胞株氧化傷害脂質過氧化分離純化酚類化合物
外文關鍵詞:Hsian-tsao (Mesona procumbens Hemsl.)antioxidative activityreactive oxygen species and free radicalChang liver cellsoxidative damagelipid peroxidationisolation and identificationphenolic component
相關次數:
  • 被引用被引用:58
  • 點閱點閱:2855
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:511
  • 收藏至我的研究室書目清單書目收藏:1
中 文 摘 要
本研究主要是探討仙草 (Mesona procumbens Hemsl.)的抗氧化機能性以及其應用。第二章探討仙草水萃取物之抗氧化特性,結果顯示仙草水萃取物在亞麻油酸系統中具有良好抗氧化性,其抗氧化性與總多酚類含量之間呈現正相關性 (p < 0.05)。仙草水萃取物在100-200 mg/mL濃度下,清除DPPH自由基、超氧陰離子、過氧化氫、一氧化氮及過氧化自由基等方面都具有顯著的效果,其抑制率為50-90 % 之間,且呈劑量-反應關係。另外,仙草水萃取物具有抑制由鐵離子所誘導紅血球細胞膜傷害,以及過氧化氫所誘導肝細胞脂質過氧化的能力,在200 mg / mL濃度下,其氧化抑制率分別為55.7及46 %。仙草水萃取物在人類肝細胞株中並未顯現出細胞毒性及基因毒性,於100 mg/mL 濃度下也具有抑制由過氧化氫所誘導肝細胞DNA氧化傷害的效果,其氧化抑制率可達88.5 %。仙草水萃取物於100 mg/mL濃度下,具有77.6 %清除胞內活性氧的能力,且呈濃度-劑量反應。由上述結果顯示,仙草水萃取物具有保護肝細胞,避免氧化傷害的效果。
第三章則針對仙草之抗氧化成分加以分離純化。結果顯示仙草 (Mesona procumbens Hemsl.) 之不同溶劑萃取物以乙酸乙酯萃取物抑制亞麻油酸氧化的效果最佳,抑制率高達93 %。將乙酸乙酯萃取物進行分離純化,並以EI-MS,1H 及 13C-NMR光譜分析加以鑑定,獲得類黃酮化合物kaempferol、apigenin,以及固醇衍生物stigmasterol、b-sitosterol、oleanolic acid 及 ursolic acid 等六種純化物質。此六種純化物質與BHA 及a-生育醇在200 mg/mL 濃度下,對亞麻油酸的氧化抑制率依序為BHA = kaempferol = 仙草乙酸乙酯萃取物 > a-生育醇 > ursolic acid > oleanolic acid > apigenin > b-sitosterol > stigmasterol。Kaempferol 在純化物質中顯現最佳之抗氧化性及最高的含量,顯示kaempferol為仙草乙酸乙酯層之主要抗氧化成分。
第四章主要探討仙草酚酸化合物的分離純化與鑑定。仙草75 %甲醇萃取物在不同溶劑萃取區分中,以酸性乙酸乙酯萃取物 (pH 2) 具有最高的總多酚類含量以及極佳的抗氧化性。經由分離純化,以及UV、EI-MS、1H-NMR及13C-NMR等光譜鑑定後,得知五個純化物質均屬酚酸類。此五種純化物質與BHA 及a-生育醇在200 mg/mL 濃度下,對亞麻油酸的氧化抑制率依序為BHA = Trolox > 酸性乙酸乙酯萃取物 > caffeic acid > a-tocopherol > protocatechuic acid > syringic acid > vanillic acid > p-hydroxybenzoic acid.,顯示酚酸類在仙草之抗氧化性中扮演重要角色。其中以caffeic acid顯現最佳之抗氧化性以及最高含量,為仙草75 %甲醇萃取物之主要抗氧化成分。
第五章探討仙草經過加鹼水煮處理對其抗氧化性及酚酸化合物之影響。仙草添加不同濃度 (0.1-1.5 %)之鹼液 (碳酸鈉、碳酸氫鈉),加熱0.5-3 小時後進行分析。結果得知以添加0.1 -0.3 %碳酸鈉鹼液,加熱2小時下所得萃取物具有較高的多酚類含量與抗氧化效果,並發現仙草鹼水煮萃取物之抗氧化性、清除自由基的能力與多酚類含量有高度正相關性。仙草鹼水煮萃取物抗氧化能力會受到過量鹼液以及長時間加熱處理而破壞。在酚酸化合物含量的變化方面,發現隨鹼液濃度提高,各酚酸類化合物含量有下降趨勢,其中尤以含量最高的caffeic acid變化也最為明顯。添加碳酸鈉鹼液處理對仙草抗氧化性有較佳保留效果。另外,亦探討在不添加鹼液的不同加工方式處理下,對其清除自由基的能力與多酚類含量的影響。仙草經浸泡18小時後再以121℃,20分鐘之殺菌釜處理,為清除自由基的最適當加工條件。殺菌釜處理下所得到的酚酸化合物萃取率,特別是caffeic acid含量,高於以水煮加熱的處理方式,顯示殺菌釜處理優於水煮加熱的處理條件。
第六章探討kaempferol等七種分離自仙草之酚類化合物的抗氧化特性。Kaempferol (200 mg/mL)抑制亞麻油酸氧化的效果最佳,與同濃度BHA、Trolox及仙草水萃取物之抗氧化性相近,caffeic acid 次之,並優於生育醇。Caffeic acid及kaempferol 在200 mg/mL濃度下清除 DPPH自由基能力也達96 及93 %,顯示此兩種化合物為提供仙草抗氧化性的重要成分。Caffeic acid、kaempferol及protocatechuic acid具有抑制過氧化氫誘導紅血球細胞膜以及肝細胞脂質過氧化的效果。酚類化合物在人類肝細胞株中並未顯現出細胞毒性及基因毒性,並具有降低由過氧化氫誘導DNA氧化傷害的效果。Kaempferol 及caffeic acid 在10 mM濃度下便分別有清除人類肝細胞株胞內活性氧31.2 與51.7 %的效果。
由上述研究結果顯示,在仙草萃取物中含量最高的caffeic acid及kaempferol,具有清除自由基、抑制生物細胞脂質與DNA氧化傷害,以及清除胞內活性氧的能力,顯示為仙草萃取物保護細胞抑制氧化傷害的主要活性成分。
關鍵字: 仙草、抗氧化性、活性氧與自由基、人類肝細胞株、氧化傷害、分離純化、酚類化合物。
Abstract
This study evaluated the antioxidant functionality of Hsian-tsao (Mesona procumbens Hemsl.). Chapter 2 focuses on the investigation of the antioxidative activities of the water extracts of Hsian-tsao. The results showed that the water extracts of Hsian-tsao have antioxidative activities in linoleic acid peroxidation system and correlated with the polyphenol contents (p < 0.05). The water extracts of Hsian-tsao have the positive concentration-dependent scavenging effect on DPPH radical, superoxide anion, hydrogen peroxide, nitric oxide and peroxyl radical. Furthermore, the water extracts of Hsian-tsao have the inhibitory effect on oxidative damage to biomolecules. The extracts also exhibited 55.7 and 46 % inhibitory effect, respectivity, on the lipid peroxidation of ghost memberane and Chang liver cells induced by hydrogen peroxide, under the concentration of 200 mg/mL. No toxicity was found in the water extracts of Hsian-tsao towards Chang liver cells, and the cell viability was over 90 %. The water extracts of Hsian-tsao could inhibit 88.5 % oxidative DNA damage induced by hydrogen peroxide in Chang liver cells under the concentration of 100 mg/mL. The water extracts of Hsian-tsao reduced 77.6 % of intracellular reactive oxygen species (ROS) in Chang liver cells at a concentration of 100 mg/mL. Thus, the water extracts of Hsian-tsao have protective effect against oxidative damage in Chang liver cells.
Chapter 3 focused on the extraction and identification of antioxidant components from Hsian-tsao. The results showed that the antioxidant activities of ethyl acetate extracts of Hsian-tsao, which exhibited 93 % inhibition on the peroxidation of linoleic acid, was greater than those of BHA and a-tocopherol at a same concentration of 200 mg/mL. The ethyl acetate extracts of Hsian-tsao was further separated and isolated by the preparative HPLC equipped with a silica column. Six components were identified by UV, EI-MS, 1H-, and 13C-NMR. These compounds included flavonoids, kaempferol and apigenin, and sterol derivatives (stigmasterol, b-sitosterol, oleanolic acid, and ursolic acid). The antioxidant activity for those compounds was in the order of BHA = kaempferol = ethyl acetate extract > a-tocopherol > ursolic acid > oleanolic acid > apigenin > b-sitosterol > stigmasterol. Kaempferol was the major compound with the strongest antioxidant activity and the highest content in the ethyl acetate extracts of Hsian-tsao.
Chapter 4 studied the purification and identification of the phenolic acids in the extracts of Hsian-tsao. The Hsian-tsao was extracted with 75 % methanol, and then the extracts were fractionated with different polarities of solvents. The results showed that the fraction obtained with acidic ethyl acetate (pH 2) possessed the highest content of the phenolic compounds and the strongest antioxidant activity on the peroxidation of linoleic acid. The fraction obtained with the acidic ethyl acetate was separated and identified as protocatechuic acid , p-hydroxybenzoic acid, vanillic acid, caffeic acid, syringic acid by UV, EI-MS, 1H and 13C-NMR. The antioxidant activity of those compounds was in the order of BHA = Trolox > acidic ethyl acetate extract of Hsian-tsao > caffeic acid > a-tocopherol > protocatechuic acid > syringic acid > vanillic acid > p-hydroxybenzoic acid. These results suggested that the phenolic acids act as the most important antioxidant components in 75 % methanol extract of Hsian-tsao, especially the caffeic acid.
Chapter 5 aimed to investigate the effects of processing conditions on the antioxidative activity and the changes in phenolic acids of the extracts from Hsian-tsao. Hsian-tsao was extracted with boiling water for 0.5-3 h by the addition of 0 to 1.5 % of Na2CO3 or NaHCO3 solution. A high content of total phenolic acid and stronger antioxidative activity were found in the extracts from the Hsian-tsao treated with Na2CO3 at concentrations of 0.1-0.3 % under heating for 2 h. The antioxidative activity, the scavenging activity on DPPH radical and superoxide anion, and the content of total phenolic compounds of Hsian-tsao extracts decreased with the increases in the alkaline concentration and the heating time. In addition, the content of the phenolic acid, especially the caffeic acid, was significantly decreased with the increase of the alkaline concentration. The effect of NaHCO3 on decreasing the content of phenolic acid was greater than that of Na2CO3. The antioxidative activity and the scavenging effects on DPPH radical and superoxide anion of Hsian-tsao extracts were highly correlated with the total phenolic contents of the extracts. In addition, the effect of the processing conditions without alkaline treatment on the free radical scavenging effects and phenolic acid contents of the extracts from Hsian-tsao was also evaluated. The Hsian-tsao soaked at room temperature for 18 h and then autoclaved at 121℃ for 20 min to obtain the extracts. The contents of phenolic acid and caffeic acid in Hsian-tsao water extracts obtained by autoclave sterilization retort was higher than that by boiling water.
Chapter 6 focused on the antioxidant properties of seven phenolic compounds in the extracts of Hsian-tsao. Kaempferol showed the strongest antioxidant activity on the peroxidation of linoleic acid, which was equal to those of BHA, Trolox and the water extract of Hsian-tsao under the same concentration of 200 mg/mL. Caffeic acid was the second one and greater than a-tocopherol. The scavenging effect of kaempferol and caffeic acid on DPPH radical were 93 and 96 %, respectivity, at a concentration of 200 mg/mL. Caffeic acid, kaempferol and protocatechuic acid had marked inhibitory effect on lipid peroxidations in the ghost membranes and Chang liver cells induced by hydrogen peroxide. No toxicity was found in the Chang liver cells treated with the phenolic compounds of Hsian-tsao. The cell viability was over 90 %. The phenolic compounds of Hsian-tsao could inhibit oxidative DNA damage in Chang liver cells induced by hydrogen peroxide. The intracellular reactive oxygen species (ROS) of Chang liver cells was decreased for 31.2 and 51.7 % by caffeic acid and kaempferol, respectivity, at a concentration of 10 mM. Thus, the caffeic acid and kaempferol, the highest content of phenolic compounds in the extracts of Hsian-tsao, were the major antioxidant compounds for the scavenging effects on free radical, inhibitory biomembrane and oxidative DNA damage, and the decreasing of intracellular reactive oxygen species in Chang liver cells.
Keyword: Hsian-tsao (Mesona procumbens Hemsl.), antioxidative activity, reactive oxygen species and free radical, Chang liver cells, oxidative damage, lipid peroxidation, isolation and identification, phenolic compound.
目 錄
中文摘要I
英文摘要IV
本論文研究架構IX
前言1
第一章 文獻整理3
第二章 仙草水萃取物之抗氧化特性27
實驗流程28
摘要29
前言30
材料與方法31
結果41
一、仙草水萃取物之抗氧化性與多酚類含量之
相關性41
二、仙草水萃取物清除活性氧與自由基之能力42
(一)仙草水萃取物清除DPPH自由基之能力42
(二)仙草水萃取物清除超氧陰離子之能力43
(三)仙草水萃取物清除過氧化氫之能力43
(四)仙草水萃取物清除一氧化氮之能力43
(五)仙草水萃取物清除過氧化自由基之能力44
三、仙草水萃取物之還原能力44
四、仙草水萃取物螯合鐵離子之能力45
五、仙草水萃取物抑制紅血球細胞膜氧化傷害
之能力45
六、仙草水萃取物抑制人類肝細胞株
(Chang liver cells)氧化傷害之能力45
(一)仙草水萃取物的毒性試驗45
(二)仙草水萃取物抑制過氧化氫誘導人類
肝細胞株脂質過氧化的影響46
(三)仙草水萃取物抑制過氧化氫誘導人類
肝細胞株DNA氧化傷害的影響46
(四)仙草水萃取物對人類肝細胞株胞內活
性氧之影響47
結論48
第三章 仙草乙酸乙酯萃取物抗氧化成分之分離純化62
摘要63
前言64
材料與方法64
結果69
一、仙草各種溶劑萃取物之萃取率及抗氧化性69
二、仙草乙酸乙酯萃取物抗氧化成分之萃取及
純化69
三、仙草乙酸乙酯萃取物純化物質的結構鑑定70
四、仙草乙酸乙酯萃取物純化物質之抗氧化性73
結論74
第四章 仙草萃取物中酚酸類抗氧化成分之分離純化86
摘要87
前言88
材料與方法89
結果91
一、仙草水萃取物總多酚類、抗壞血酸、生育
醇及b-胡蘿蔔素之含量分析91
二、仙草水萃取物於不同溶劑區分下之萃取量
、萃取率、總多酚類含量及抗氧化能力92
三、仙草水萃取物中抗氧化成分的純化與結構鑑定93
四、仙草酸性乙酸乙酯區分物純化物質之抗氧化性96
結論97
第五章 加工處理對仙草抗氧化性以及酚類化合物含量
變化之影響109
實驗流程110
摘要111
前言112
材料與方法112
結果116
一、鹼液種類、濃度及加熱時間對仙草鹼水煮
萃取物抗氧化性之影響116
二、鹼液種類、濃度及加熱時間對仙草鹼水煮
萃取物清除DPPH自由基能力之影響117
三、鹼液種類、濃度及加熱時間對仙草鹼水煮
萃取物清除超氧陰離子能力之影響118
四、鹼液種類、濃度及加熱時間對仙草鹼水煮
萃取物總多酚類含量之影響119
五、鹼液處理對仙草鹼水煮、萃取物酚酸類含
量的影響120
六、不同浸泡時間及殺菌釜高溫處理時間因素
對仙草水萃取物清除自由基能力與多酚類
含量的影響122
七、不同加熱時間之殺菌釜條件處理對仙草水
萃取物清除自由基能力之影響122
八、加熱及殺菌釜處理對仙草酚酸類成分含量
之影響122
結論123
第六章 仙草酚類化合物之抗氧化特性136
實驗流程137
摘要138
前言139
材料與方法140
結果144
一、仙草酚類化合物之抗氧化性144
二、仙草酚類化合物清除活性氧與自由基的能力145
(一)仙草水萃取物清除DPPH自由基之能力145
(二)仙草水萃取物清除超氧陰離子之能力146
(三)仙草水萃取物清除一氧化氮之能力146
(五)仙草水萃取物清除過氧化自由基之能力147
三、仙草水萃取物之還原能力148
四、Caffeic acid及kaempferol抑制紅血球細胞
膜質過氧化之能力148
五、仙草酚類化合物抑制人類肝細胞株
(Change liver cells)氧化傷害之能力149
(一)仙草酚類化合物的毒性試驗149
(二)仙草酚類化合物對過氧化氫誘導
人類肝細胞株脂質氧化傷害之影響149
(三)仙草酚類化合物對過氧化氫誘導人類
肝細胞株DNA損傷的影響150
(四) 仙草水萃取物、caffeic acid 與kaempferol對
人類肝細胞株胞內活性氧的影響151
結論151
總結論165
第七章 參考文獻167
附錄一……………………………………………………………….185
附錄二……………………………………………………………..….212
圖 次
圖一、 本研究所使用的仙草材料圖片VIII
圖1-1、氧化壓力造成細胞傷害的機制5
圖2-1、不同濃度仙草水萃取物之抗氧化性49
圖2-2、不同濃度仙草水萃取物清除DPPH自由基、超
氧陰離子、過氧化氫及一氧化氮的能力51
圖2-3、不同濃度仙草水萃取物清除過氧化自由基
(ORACROO·)的能力54
圖2-4、不同濃度仙草水萃取物的還原力與螯合金屬離
子的能力55
圖2-5、仙草水萃取物抑制二價鐵離子誘導紅血球細胞
膜氧化之能力56
圖2-6、人類肝細胞株DNA彗星影像圖。以EtBr 當
螢光染劑。(a) 無DNA傷害 (b) 輕度傷害
(c) 中度傷害 (d)重度傷害59
圖2-7、仙草水萃取物對過氧化氫誘導人類肝細胞株
(Chang liver cells) DNA損傷之影響60
圖2-8、仙草水萃取物於過氧化氫誘導人類肝細胞株產
生胞內活性氧的影響61
圖3-1、仙草乙酸乙酯萃取物抗氧化成分之分離純化流程75
圖3-2、仙草不同溶劑萃取物之抗氧化性77
圖 3-3、仙草乙酸乙酯萃取物經矽膠管柱層析初步區分
後各區分層之抗氧化性78
圖3-4、仙草乙酸乙酯萃取物純化物質1-6及仙草乙酸
乙酯萃取物、生育醇、BHA抗氧化性比較79
圖4-1、仙草萃取物抗氧化成分之分離流程圖98
圖4-2、仙草酸性乙酸乙酯萃取物 (pH 2)之XAD-7液
相管柱層析圖99
圖4-3、仙草75 %甲醇萃取物之不同溶劑萃取區分物
之抗氧化性101
圖4-4、仙草酸性乙酸乙酯萃取物經不同管柱區分後,
各區分層的抗氧化性102
圖4-5、仙草酸性乙酸乙酯萃取物純化物質之抗氧化性103
圖5-1、加熱時間及鹼液濃度對仙草萃取物抗氧化性之影響124
圖5-2、加熱時間及鹼液濃度對仙草萃取物清除DPPH
自由基能力之影響125
圖 5-3、加熱時間及鹼液濃度對仙草萃取物清除超氧陰
離子能力之影響126
圖 5-4、加熱時間及鹼液濃度對仙草萃取物總多酚類的
含量變化127
圖5-5、酚酸類標準品及仙草水萃取物中酚酸化合物之
高效液相層析圖128
圖5-6、碳酸氫鈉鹼液處理下鹼水煮萃取物之酚類化合
物高效液相層析圖129
圖5-7、碳酸鈉鹼液處理下鹼水煮萃取物之酚類化合物
高效液相層析圖130
圖5-8、碳酸鈉鹼液濃度對仙草酚類化合物含量之影響131
圖5-9、碳酸氫鈉鹼液濃度對仙草酚類化合物含量之影響132
圖5-10、殺菌釜不同加熱時間處理下對仙草萃取物清除
自由基能力及多酚類含量之影響134
圖5-11、不同加熱處理下仙草萃取物酚酸化合物之影響135
圖6-1、仙草水萃取物酚類化合物之抗氧化性153
圖6-2、仙草水萃取物、酚類化合物、Trolox、a-生育
醇及BHA清除DPPH自由基之能力154
圖 6-3、仙草水萃取物及酚類化合物清除超氧陰離子之能力155
圖 6-4、仙草水萃取物、酚類化合物、Trolox及BHA清除一氧化氮之能力156
圖 6-5、仙草水萃取物及酚類化合物清除過氧化自由基 (ORACROO)的能力157
圖 6-6、仙草酚類化合物之還原能力158
圖 6-7、仙草水萃取物、酚類純化成分及a-生育醇抑制
二價鐵離子誘導紅血球細胞膜氧化之能力159
圖6-8、酚類化合物對過氧化氫誘導人類肝細胞株脂質
過氧化之影響161
圖6-9、酚類化合物對人類肝細胞株細胞基因毒性之影響162
圖6-10、仙草酚類化合物對過氧化氫誘導人類肝細胞株
DNA損傷之影響163
圖6-11、仙草水萃取物、caffeic acid與kaempferol於過
氧化氫誘導人類肝細胞株產生胞內活性氧的影響164
表 次
表1-1、人體血漿中之抗氧化劑6
表1-2、類黃酮化合物的膳食來源8
表1-3、類黃酮的抗氧化性9
表1-4、人體中類黃酮與酚類化合物存在的證據15
表2-1、仙草水萃取物中總多酚類、抗壞血酸、生育醇
及b-胡蘿蔔素含量50
表2-2、仙草水萃取物總多酚類含量、抗氧化性與其清除
自由基能力之間的相關係數52
表2-3、仙草水萃取物清除50 %自由基及活性氧之濃度53
表2-4、仙草水萃取物之毒性試驗57
表2-5、仙草水萃取物對於過氧化氫誘導人類肝細胞中脂
質過氧化物生成之影響58
表3-1、仙草各溶劑萃取物萃取率75
表4-1、仙草75%甲醇萃取物之不同溶劑萃取區分之萃取
量、萃取率及總多酚類含量100
表5-1、不同浸泡時間及殺菌釜處理下對仙草萃取物清除
自由基能力之影響133
表6-1、 仙草酚類化合物之毒性試驗160
甘偉松,1980。藥用植物。國立中國醫藥研究所,台北。
史宏財、許明仁,1994。仙草凝膠物質之萃取及其凝膠性質之研究。桃園區農業改良場研究報告。16:1-9。
李勉民,1994。常見藥草圖說。讀者文摘遠東有限公司,香港。
林宗旦、林美昭,1977。最新植物化學。昭人出版社,台中。
林國華,1997。常見台灣中草藥 (2)。涼粉草p 125。好兄弟出版社,台北。
邱年永、張光雄,1986。原色台灣藥用植物圖鑑 (2)。台北南天書局,p190。
姜金龍、龔財立、李穎宏,1993。仙草凍的原料-仙草的栽培及利用。興農雜誌,295:8-14。
胡敏夫、劉慧瑛、朱戩良、劉新裕,1997。仙草品系間農藝性狀與化學組成分之比較。中華農業研究,46 (1):32-41。
陳惠英、顏國欽,1998。自由基、抗氧化防禦與人體健康。中華民國營養學會雜誌,23 (1):105-121。
張憲昌,1990。臺灣自然觀察圖鑑,藥草 (二)。渡假出版社有限功公司,台北市。
楊祖馨、王西華、余幸福、鄭水淋、劉明堂、葉雲旗、鄭幸梧,1954。關於仙草碳水化合物之研究。台大農化,p7-12。
楊啟春、陳理宏、呂政義,1982。仙草凍凝膠機構之研究-以不同乙醇濃度沈澱仙草多醣膠質之凝膠性及其醣成份之組成。食品科學,9 (1-2): 19-26。
廖桂聲,1997。青草可樂消暑又退火。長春月刊,7月號 34-36。
大久保 勉、小清水 弘一、大東 肇、金武 祚、西元 勝也、山崎 長孝,1989。含ursolic acid 與 oleanolic acid之健康飲料。日本公開特許報,昭64-39973。
Agrawal, P. K., 1989. Carbon-13 NMR of flavonoids, p. 152.
Azuma, K., Nakayama, M., Kosaji, M., Ippoushi, K., Yamaguchi, Y., Kohata, K., Yamauchi, Y., Ito, H. and Higashio, H., 1999. Phenolic antioxidants from the leaves of Corchorus olitorius L. J. Agric. Food Chem., 47: 3963-3966.
Balanehru, S. and Nagarajan, B., 1991. Protective effect of oleanolic acid and ursolic acid against lipid peroxidation. Biochem. International, 24 : 981-990.
Balanehru, S. and Nagarajan, B., 1992. Intervention of adriamycin induced free radical damage. Biochem. International, 28 (4): 735-744.
Benaventa-Garcia, O., Castillo, J., Marin, F. R., Ortuno, A. and Del Rio, J., 1997. Use and properties of citrus flavonoids. J. Agric. Food Chem., 45: 4505-4515.
Bergendi, L., Bene?, L., ?ura?kova,F.,Feren?ik, M., 1999. Chemistry, physiology and pathology of free radicals. Life Sciences, 65: 1865-1874.
Block, G., Patterson, B. and Subar, A., 1992. Fruit, vegetables, and cancer prevention: a review of epidemiological evidence. Nutr. Cancer, 18: 1-29.
Bohr, V., Anson, R. M., Mazur, S. and Dianov, G., 1998. Oxidative DNA damage processing and change with aging. Toxicology Letters, 102-103:47-52.
Bors, W., Heller, W., Michel, C. and Saran, M., 1990. Flavonoids as antioxidants: determination of radical scavenging efficiencies. Methods Enzymol. 186:343-355.
Bourne, L. C. and Rice-Evans, C. A., 1999. Detection and measuring bioavailability of phenolics and flavonoids in human: pharmacokinetics of urinary excretion of dietary ferulic acid. In "Methods in Enzymology: Oxidants and antioxidants" by Packer, L., Vol 299, pp 91-106.
Brand-Williams, W., Cuvelier, M. E. and Berset, C., 1995. Use of a free radical method to evaluate antioxidant antivity. Lebensm-Wiss. U. Technol. 28: 25-30.
Brooks, R. J., Bunton C. A. and Hellyer J. M., 1972. The oxidative hydrolysis of p-hydroxyphenyl phosphates. J. Org. Chem., 38 : 2151-2156.
Burns, J., Gardner, P. T., O''''Neil, J., Crawford, S., Morecroft, I., McPhail, D. B., Lister, C., Matthews, D., MacLean, M. R., Lean, M. E. J., Duthie, G. G. and Crozier, A., 2000. Relationship among antioxidant activity, vasodilation capacity, and phenolic content of red wines. J. Agric. Food Chem., 48: 220-230.
Caccetta, R. A. A., Croft, K. D., Beilin, L. J. and Puddey, I. B., 2000. Ingestion of red wine significantly increases plasma phenolic acid concentrations but does not acutely affect ex vivo lipoprotein oxidizability. Am. J. Clin. Nutr., 71: 67-74.
Cao, G., Alessio, H. M., and Cutler, R. G., 1993. Oxygen-radical absorbance capacity assay for antioxidants. Free radical Biol. & Med., 14: 303-311.
Cao, G., Sofic, E. and Prior, R. L., 1996. Antioxidant capacity of tea and common vegetables. J. Agric. Food Chem., 45: 304-309.
Cao, G., Sofic, E. and Prior, R. L., 1997. Antioxidant and prooxidant behavior of flavonoids: structure-activity relationships. Free radical biol. & Med., 22: 749-760.
Carpenter A. P., 1979. Determination of tocopherols in vegetable oils. J. Amer. Oil Chem. Soc., 56: 668.
Cayuela-Martinez, M., 1995. Oxygen free radicals and human disease. Biochimie, 77: 147-161.
Chari, V. M., Ilyas, M., Wagner, H., Neszmelyi, A., Chen, F. C., Chen, L. K., Lin, Y. C. and Lin, Y. M., 1977. 13C- NMR spectroscopy of biflavanoids. Phytochemistry, 16: 1273-1278.
Chen, Z. Y., Chan, P. T., Ho, K. Y., Fung, K. P. and Wang, J., 1996. Antioxidant activity of natural flavonoids is governed by number and location of their aromatic hydroxyl groups. Chemistry and physics of lipids, 79: 157-163.
Chen, C.-W. and Ho, C.-T., 1995. Antioxidant properties of polyphenols extracted from green and black teas. J. Food Lipids, 2: 35-46.
Chen, C.-W. and Ho, C.-T., 1997. Antioxidant activities of caffeic acid and its related hydroxycinnamic acid compounds. J. Agric. Food Chem.,45: 2374-2378.
Chen, Z. S., Lai, J. S. and Kuo, Y. H., 1991. The constituents of Cynanchum taiwanianum. J. Chinese Chem. Soci., 38: 393-396.
Chen, Q., Shi, H. and Ho, C. T., 1992. Effects of Rosemary extracts and major constituents on lipid oxidation and soybean lipoxygenase activity. J. Am. Oil Chem. Soc., 69 (10): 999-1002.
Coccetta, R. A. A., Croft, K. D., Beilin, L. J. and Puddey, I. B., 2000. Ingestion of red wine significantly increases plasma phenolic acid concentrations but does not acutely affect ex vivo lipoprotein oxidizability. Am. J. Clin. Nutr.,71: 67-74.
Cook, N. C. and Samman, S., 1996. Flavonoids-Chemistry, metabolism, cardioprotective effects, and dietary sources. J. Nutr. Biochem., 7: 66-76.
Cutler, R.G., 1984. Antixidant, aging and longevity. In: Free Rodicals in Biology (Pryor WA. ed). Academic Press. New York.
Culter, R. G., 1991. Antioxidants and aging. Am. J. Clin. Nutr., 53: 373s-379s.
Cuvelier, M.-E., Richard, H. and Berset, C., 1992. Comparison of the antioxidative activity of some acid-phenols: structure-activity relationship. Biosci. Biotech. Biochem., 56 : 324-325.
Deschener, E. E., Ruperto, J., Wong, G., Newmark, H. L., 1993. The effect of dietary quercetin and rutin on AOM-induced acute colonic epithelial abnormalities in mice fed a high fat diet. Nutr. Cancer, 20: 199-204.
Ding, S.-l. and Zhu, Z.-y, 1993. Gycomoside I: A new dammarane saponin from Gynostemma compressum.. Planta Med. 59: 373-375.
Dinis, T. C. P., Madeira, V. M. C. and Almeida, L. M., 1994. Action of phenolic derivatives (acetaminophen, salicylate, and 5-aminosalicylate) as inhibitors of menbrane lipid peroxidation and as peroxyl radical scavengers. Arch. Biochem. Biophys., 315: 161-169.
Duh, P. D., 1998. Antioxidant activity of burdock (Arctium lappa Linne): its scavenging effect on free-radical and active oxygen. J. Am. Oil Chem. Soc., 75: 455-461.
Duh, P. D. and Yen, G. C., 1997. Antioxidative activity of three herbal water extracts. Food Chem., 60 (4): 639-645.
Duh, P. D., Yeh, D. B. and Yen, G. C., 1992. Extraction and identification of an antioxidative component from peanut hulls. J. Am. Oil Chem. Soc., 69: 814-818.
Duthie, S. J., Collins, A. R., Duthie, G. G. and Dobson, V. L., 1997. Quercetin and myricetin protect against hydrogen peroxide-induced DNA damage (strand breaks and oxidised pyrimidine) in human lymphocytes. Mutat. Res. 393: 223-231.
Emmons, C. L., Peterson, D. M. and Paul, G. L., 1999. Antioxidant capability of oat (Avena sativa L.) extracts. 2. In vitro antioxidant activity and contents of phenolic and totol antioxidants. J. Agric. Food Chem., 47: 4895-4898.
Fairbairn, D, W., Olive, P. L., and O''''Neill, K. L., 1995. The comet assay: a comprehensive review. Mutat. Res., 339: 37-59.
Farnkel, E. N. and Huang, S. W., 1997. Antioxidant activity of tea catechin in different lipid systems. J. Agric. Food Chem. 45:3033-3038.
Frankel, E. N., Bosanek, C. A., Mey''er, A. S., Siliman, K. and Kirk, L. L., 1998. Commercial grape juices inhibit the in vitro oxidation of human low-density lipoproteins. J. Agric. Food Chem., 46: 834-838.
Fenech, M., Stockley, C. and Aitken, C., 1997. Moderate wine consumption protects against hydrogen peroxide-induced DNA damage. Mutat. Res. / Fundamental and molecular mechanisms of mutagenesis, Vol. 379 Supplement September pp. S173.
Friedman, M. and Jurgens, H. S., 2000. Effect of pH on the stability of plant phenolic compounds. J. Agric. Food Chem., 48: 2101-2110.
Fulcrand, H., Cheminat, A., Brouillard, R. and Cheynier, V., 1994. Characterization of compounds obtained by chemical oxidation of caffeic acid in acid condition. Phytochemistry, 35: 499-505.
Gadow, A. V., Joubert E. and Hansmann, C. F., 1997. Comparison of the antioxidant activity of aspalathin with that of other plant phenols of rooibos tea (Aspalathus linearis), a-tocopherol, BHT and BHA. J. Agric. Food Chem., 45: 632-638.
Gail, H.U., Perchellet, E. M. and Perchellet, J. -P., 1991. Inhibition of tumor promoter-induced ornithine decarboxylase activity by tannic acid and other polyphenols in mouse epidermis in vivo. Cancer Res., 51: 2820-2825.
Gaulejac, N. S.-C. de, Provost, C. and Vivas, N., 1999. Comparative study of polyphenol scavenging activities assessed by different methods. J. Agric. Food Chem., 47: 425-431.
Gracy, R. W., Talent, J. M., Kong, Y. and Conrad, C. C., 1999. Reactive oxygen species: the unavoidable environmental insult? Mutation Res., 428: 17-22.
Gutteridge, J. M. C. and Halliwell, B., 1994. Free radicals and antioxidants in ageing and disease: fact or fantasy. Chapter 6, In "Antioxidants in nutrition, health, and disease.", eds by B. Halliwell and J. M. C. Gutteridge pp. 111-135. Oxford University press: Oxford New York Tokyo.
Halliwell, B. and Gutteridge, J. M. C., 1989a. Free radicals and toxicology. Ch. 6, In "Free radicals in Biology and medicine." eds by B. Halliwell and J. M. C. Gutteridge pp. 299-365. Clarendon Press. Oxford.
Halliwell, B. and Gutteridge, J. M. C., 1989b. Free radicals, ageing, and disease. Chapter. 8, In Free Radicals and in biology and Medicine, Eds.by B. Halliwell and J. M. C. Gutteridge, p.416-493. Clarendon Press, Oxford.
Halliwell, B. and Gutteridge, J. M. C., 1990. Role of free radicals and catalytic metal ions in human disease: an overview. Methods Enzymol., 186: 1-85.
Halliwell, B. and Gutteridge, J. M. C., 1999a. The chemistry of free radicals and related reactive species. Chapter 2, In " Free Radicals in Biology and Medicine" eds by B. Halliwell and J. M. C. Gutteridge pp 36-104. Clarendon Press, Oxford.
Halliwell, B. and Gutteridge, J. M. C., 1999b. Oxidative stress and antioxidant protection: some special cases. Chapter 7, In " Free Radicals in Biology and Medicine" eds by B. Halliwell and J. M. C. Gutteridge pp 516-518. Clarendon Press, Oxford.
Halliwell, B., Gutteridge, J. M. C. and Cross, C. E., 1992. Free radicals, antioxidants and human disease: where are we now? J. Lab. Clin. Med., 119: 598-619.
Halliwell, B., Mutrcia, M. A., Chirico, S. and Aruoma, O., 1995. Free radicals and antioxidants in food and in vivo: what they do and how they work.Critical Reviews in Food Science and Nutrition, 35: 7-20.
Hanasaki, Y., Orgawa, S. and Fukui, S., 1994. The correlation between active oxygens scavenging and antioxidative effects of flavonoids. Free Radical Biol & Med. 16: 845-850.
Harbone, J. B. and Williams, C. A., 2000. Advances in flavonoid research since 1992. Phytochemistry, 55: 481-504.
Hellman, B., Vaghef, H. and Bostrom, B., 1995. The concepts of tail moment and Tail inertia in the single cell electrophoresis assay. Mutat. Res., 366: 123-131.
Hertog, M. G. L., Feskens, E. J. M., Hollman, P. C. H., Katan, M. B. and Kromhout, O., 1993. Dietary antioxidant flavonoids and risk of coronary heart disease: the Zutphen Elderly Study. Lancet, 342: 1007-1011.
Ho, C.-T., 1992. Phenolic compounds in food. Chapter. 1, In "Phenolic Compounds in Food and Their Effects on Health I" eds. by C.-T. Ho, C. Y. Lee, and M.-T.Huang, pp.2-7. ACS symposium series (506), Inc. New York.
Ho, C. T., Chen, Q., Shi, H., Zhang, K. Q. and Rosen, R. T., 1992. Antioxidative effect of polyphenol extract prepared from various Chinese teas. Prev. Med. 21:520-525.
Hodgson, J. M., Morton, L. W., Puddey, I. B., Beilin, L, J. and Croft, K. D., 2000. Gallic acid metabolites are markers of black tea intake in human. J. Agric. Food Chem., 48: 2276-2280.
Holland, H. L., Diakow, P. R. P. and Taylor, G. J., 1978. 13C nuclear magnetic resonance spectra of some C-19-hydroxy, C-5, 6 epoxy, C-24 ethyl, and C-19-norsteroids. Can. J. Chem. 56: 3121-3127.
Hollman, P. C. H. and Katan, M. B., 1999. Dietary flavonoids: intake, health effects and bioavailability. Food Chem. Toxic., 37: 937-942.
Inoshiri, S., Sasaki, M., Kohda, H., Otsuka, H. and Yamasaki, K., 1987. Aromatic glycosides from berchemia racemosa. Phytochemistry, 26: 2811-2814.
Inoue, M., Suzuki, R., Sakaguchi, N., Li, Z., Takeda, T., Ogihara, Y., Jiang, B. Y. and Chen, Y., 1995. Selective induction of cell deaty in cancer cells by gallic acid. Biol. Pharm. Bull., 18:1526-1530.
Ito, N., Fukushima, S., Hasegawa, A., Shibata, M. and Ogiso, T., 1983. Carcinogenicity of butylated hydroxyanisole in F344 rates. J. Natl. Cancer Inst., 70: 343-347.
Johnson, M. K. and Loo, G., 2000. Effects of epigallocatechin gallate and quercetin on oxidative damage to cellular DNA. Mutat. Res., 459:211-218.
Joslyn, M. A. and Branch, G. E. K., 1935. The kinetics of absorption of oxygen by catechol. J. Phys. Chem,. 57: 1779-1784
Kadam. S. S., Subramanyam. P., Jawale. H. K., Satwadhar, P. N. and Jadhav, S. J., 1981. Improvement in cooking quality of horse gram (Dolichos biflorus) by pre-soaking treatment with salt solution. Qual. Plant Plant foods Hum. Nutr. 31 (2): 171-174.
Kashiwada, Y., Wang, H. K., Nagao, T., Kitana, S., Yasuda, I., Fujioka, T., Yamagishi, T., Cosentino, L. M., Kozuka, M., Okabe, H., Ikeshiro, Y., Hu, C. Q., Yeh, E. and Lee, K. H., 1998. Anti-AIDS agents. 30. Anti-HIV activity of oleanolic acid, pomolic acid, and structurally related triterpenoids. J. Nat. Prod., 61 : 1090-1095.
Kalt, W., Forney, C. F., Martin, A. and Prior, R. L., 1999. Antioxidant capacity, vitamin C, phenolics, and anthocyanins after fresh storage of small fruits. J. Agric. Food Chem., 47: 4638-4644.
Kaul, T. N., Middleton, E. and Ogra, P. L., 1985. Antiviral effects of flavonoids on human viruses. J. Med. Virol. 15:17-79.
Kazuki, H., Shinichi, K., Michio, Y., 1996. Natural antioxidants and active oxygen removers in food cosmetics, and pharmaceuticals. Chemical Abstracts, 124:200690r.
Keaney, J. R. and Frei, B., 1994. Antioxidant protection of low-density lipoprotein and its role in the prevention of atherosclerotic vascular disease. In"Nature Antioxidants in Human Hearth and Disease." Ed by B. Frei, pp. 303-351. Academic Press: San Diego, CA.
Kerry, N. and Rice-Evans, C., 1998. Peroxynitrite oxidises catechols to o-quinones. FEBS Letters, 437: 167-171.
Kimura, Y., Okuda, H., Okuda, T., Hatano, T., Agata, I. and Arichi, S., 1985. Studies on the activities of tannins and related compounds from medicinal plants and drugs. VII. Effects of extracts of leaves of Artemisia species, and caffeic acid and chlorogenic acid on lipid metabolic injury in rats fed peroxidized oil.Chem. pharm. Bull.,33: 2028-2034.
Kitada, Y., Tamase, K., Sasaki, M., Yamazoe, Y., Maeda, Y., Yamamoto, M. and Yonetani, T., 1989. Determination of L-ascorbic acid, tocopherol, carotene and chlorophyll in various teas. Nippon Shokuhin Kogyo Gakkaishi. 36: 927-933.
Kitagawa, S., Fujisawa, H. and Sakurai, H., 1992. Scavenging effects of dihydric phenols on superoxide anion radicals, studies electron spin resonance spectrometry. Chem. Pharm. Bull., 40: 304-307.
Klein, B. P. and Perry A. K., 1982. Ascorbic acid and vitamin A activity in selected vegetables from different geographical areas of the United States. J. Food Sci., 47: 941-948.
Kuo, Y. H. and Shue, M. J., 1991. New esters, 2-(4-hydroxy-3-methoxyphenyl)ethyl Hexa- and Octacosanoates from the leaves of Cinnamomum reticulatum Hay. J. Chin. Chem. Soci., 38 : 65-69.
Laranjinha, J., Vieira, O., Almeida, L. and Madeira, V., 1996. Inhibition of metmyoglobin/H2O2-dependent low density lipoprotein lipid peroxidation naturally occurring phenolic acids. Biochemical Pharmacology, 51: 395-402.
Laurena, A. C., Garcia, V. V. and Mendoza, E. M. T., 1986. Effects of soaking in aqueous acidic and alkali solutions on removal of polyphenols and in-vitro digestibility of cowpea. Qual. Plant Plant foods Hum. Nutr., 36 : 107-118.
Leffler, J. E., 1993. The small radicals. In" An introduction to free radicals". Eds. By J. E. Leffler. John wiley & son Inc. New York, p. 119-121.
Lewis, N. G., 1993. Plant phenolics. Chapter 6, In "Antioxidants in higher plants" ed by Alscher, R. G. and Hess, J. L., CRC Press, London, pp.135-169.
Lin, C. N., Chung, M. I., Gan, K. H. and Chiang, J. R., 1987. Xanthones from formosan Gentianaceous plants. Phytochemistry, 26 (8): 2381-2384.
Liu, J., 1995. Pharmacology of olanolic acid and ursolic acid. J. Ethnopharmacol., 49 :57-68.
Liu, G. T., Zhang, T. M., Wang, B. and Wang, Y. W., 1992. Protective action of seven natural phenolic compounds against peroxidative damage to biomembranes.
Lu, Y. and Foo, L. Y., 2000. Antioxidant and radical scavenging activities of polyphenols from apple pomace. Food Chem., 68: 81-85.
Magnani, L., Gaydou, E. M. and Hubaud, J. C., 2000. Spectrophotomertic measurement of antioxidant properties of flavones and flavonols against superoxide anion. Analy. Chinica Acta, 411: 209-216.
Mandal, S. and Stoner, G. D., 1990. Inhibition of N-nitrosobenzylmethyl-amine-induced escophageal tumorigenesis in rats by ellagic acid. Carcinogenesis,, 11, 55-61.
Marcocci, L., Maguire, J. J., Droy-Lefaix, M. T. and Packer, L., 1994. The nitric oxide-scavenging properties of Ginkgo Biloba extract EGB 761. Biochem. Biophys. Res. Commun. 201: 748-755
Martinez-Cayuela, M., 1995. Oxygen free radicals and human disease. Biochimie, 77: 147-161.
Maruta, Y., Kawabata, J. and Niki, R., 1995. Antioxidative caffeoylquinic acid derivatives in the roots of burdock (Arctium lappa L.) J. Agric. Food Chem., 43: 2592-2595.
Maxwell, S., Cruickshank, A. and Thorpe, G., 1994. Red wine and antioxidant activity in serum. Lancet, 344 (8916): 193-4.
Milic, B. L., Djilas, S. M. and Canadanovic-Brunet, J. M., 1998. Antioxidative activity of phenolic compounds on the metal-ion breakdown of lipid peroxidation system. Food Chem., 61: 443-447.
Mitsuda, H., Yasumoto, K., and Iwami, K., 1966. Antioxidative action of indole compounds during the autoxidation of linoleic acid. Eiyo to Shokuryo. 19: 210-214.
Moon, J. H. and Terao, J., 1998. Antioxidant activity of caffeic acid and dihydrocaffeic acid in lard and human low-density lipoprotein. J. Agric. Food Chem., 46: 5062-5065.
Morel, I., Lescoat, G., Cogrel, P., Sergent, O., Pasdecoup, N., Brissot, P., Cillard, P. and Cillard, J, 1993. Antioxidant and iron chelating activities of the flavonoids catechin, quercetin and diosmetin on iron-loaded rat hepatocyte cultures. Biochem. Pharmacol. 45:13-19.
Mori, H., Tanaka, T., Shima, H. Kuniyasu, T. and Takahashi, M., 1986. Inhibitory effect of chlorogenic acid on methylazoxymethanol acctate-induced carcinogenesis in large intestine and liver of hamsters. Cancer lett., 30,49-54.
Morrissey, P. A. and O''''Brien, N. M., 1998. Dietary antioxidants in health and disease. Int. Dairy Journal, 8: 463-472.
Nakamura, Y., Ohto, Y., Murakami, A., and Ohigashi, H., 1998. Superoxide scavenging activity of rosmarinic acid from Perilla Frutescens Britton Var. acuta f. viridis. J. Agric. Food Chem. 46: 4545-4550.
Noroozi, M. Anderson, W. J. and Lean M. E., 1998. Effects of flavonoids and vitamin C on oxidative DNA damage to human lymphocytes. Am. J. Clin. Nutr., 67: 1210-1218.
Ohnishi, M., Morishita, H., Iwahashi, H., Toda, S., Shirataki, Y., Kimura, M. and Kido, R., 1994. Inhibitory effects of chlorogenic acid on linoleic acid peroxidation and haemolysis. Phytochemistry, 36: 579-583.
Pannala, A. S., Singh, S. and Rice-Evans, C., 1999. Flavonoids as peroxynitrite scavengers In Vitro. In "Methods in Enzymology: Oxidants and antioxidants" by Packer, L., Vol 299, pp 207-235.
Papadopoulos, G. and Boskou, D., 1991. Antioxidant effect of natural phenols on Olive oil. J. Agric. Food Chem. 68: 669-671.
Papadopoulos, G. and Boskou, D., 1991. Antioxidant effect of natural phenols on Olive oil. J. Agric. Food Chem,. 68: 669-671.
Paquay, J. B. G., Haenen, G. R. M. M., Stender, G., Wiseman, S. A., Tijburg, L. B. M. and Bast, A., 2000. Protection against nitric oxide toxicity by tea. J. Agri. Food Chem. 48: 5768-5772.
Phirke, A. V., Chavan, L. K., Jadhav, S. J., and Salunkhe, D. K., 1982. Physical properties chemical composition, cookability and solubilization of proteins of dry beans (Phaseolus Vulgaris L.). Legume Research, 5 : 91-96.
Pitotti, A., Elizalde, B. E., and Anese, M., 1995. Effect of caramelization and Maillard reaction products on peroxidase activity. J. Food Biochem., 18 (6): 445-457.
Pokorny, J., 1987. Major fators affecting the autoxidation of lipids. In Autoxidation of unsaturated lipids; Edited by Chan, H. W.-S.; Academic press Inc. Ltd., London. p141-206.
Pouchert, C. J., 1978a. The Aldrich Library of Infrared Spectra, 2nd ed.; Aldrich Chem. Co. Inc., 2: 212B.
Pouchert, C. J., 1978b. The Aldrich Library of Infrared Spectra, 2nd ed.; Aldrich Chem. Co. Inc., 2: 195A.
Pouchert, C. J., 1978c. The Aldrich Library of Infrared Spectra, 2nd ed.; Aldrich Chem. Co. Inc., 2: 212A.
Pouchert, C. J., 1978d. The Aldrich Library of Infrared Spectra, 2nd ed.; Aldrich Chem. Co. Inc., 2: 181C.
Pouchert, C. J., 1978e. The Aldrich Library of Infrared Spectra, 2nd ed.; Aldrich Chem. Co. Inc., 2: 228D.
Pouchert, C. J. and Behnke, J., 1992a. The Aldrich Library of 13C and 1H FT-NMR Spectra. Vol. 3, Aldrich Chemical Co. Inc., New York, p 569A.
Pouchert, C. J. and Behnke, J., 1992b. The Aldrich Library of 13C and 1H FT-NMR Spectra. Vol. 3, Aldrich Chemical Co. Inc., New York, p 569B.
Pouchert, C. J. and Behnke, J., 1992c. The Aldrich Library of 13C and 1H FT-NMR Spectra. Vol. 3, Aldrich Chemical Co. Inc., New York, p 595A.
Pouchert, C. J. and Behnke, J., 1992d. The Aldrich Library of 13C and 1H FT-NMR Spectra. Vol. 3, Aldrich Chemical Co. Inc., New York, p 595B.
Prior, R. L., Cao, G., Martin, A., Sofic, E., McEwen, J., O''''Brien C., Lischner, N., Ehlenfeldt, M., Kalt, W., Krewer, G. and Mainland, C. M., 1998. Antioxidant capacity as influenced by total phenolic and anthocyanin content, maturity, and variety of Vaccinium species, J. Agric. Food Chem., 46:2686-2693.
Ramanathan, A., Das, N. P. and Tan, C. H., 1994. Effects of g-linoleic acid, flavonoids, and vitamins on cytotoxicity and lipid peroxidation. Free Radic. Biol. Med., 16: 43-48.
Rapisarda, P., Tomaino, A., Cascio, R. L., Bonina, F., Pasquale, A. D. and Saija, A., 1999. Antioxidant effectiveness as influenced by phenolic content of fresh orange juices. J. Agric. Food Chem., 47: 4718-4723.
Rhinkus, S. J. and Taylor, R. T., 1990. Analysis of hydrogen peroxide in freshly prepared coffees. Food Chem.Toxic., 28: 323-331.
Rice-Evens, C. A., Miller, N. J. and Paganga, G., 1996. Structure-antioxidant activity relationships of flavonoids and phenolic acid. Free Radic. Biol. Med., 20: 933-956.
Robak, J. and Gryglewski, I. R., 1988. Flavonoids are scavengers of superoxide anions. Biochem. Pharma., 37: 837-841.
Safayhi, H. and Sailer, E. R., 1997. Anti-inflammatory actions of pentacyalic triterpenes. Planta Medica., 36 : 487-493.
Sakagami, H., Satoh, K., Ohata, H., Takahashi, H., Yoshida, H., Iida, M., Kuribayashi, N., Sakagami T., Momose, K. and Takeda, M., 1996. Relationship between ascorbyl radical intensity and apoptosis-individual cells. Exp. Cell Res., 175:184-191.
Sakushima, A., Coskun, M. and Maoka, T., 1995. Hydroxybenzoic acid from Boreava orientalis. Phytochemistry, 40 : 257-261.
Sanbongi, C., Osakabe, N., Natsume, M., Takizawa, T., Gomi, S. and Osawa, T., 1998. Antioxidative polyphenols isolated from Theobroma cacao. J. Agric. Food Chem., 46: 454-457.
Sanchez-Moreno, C., Satue-Gracia, M. T. and Frankel, E. N., 2000. Antioxidant activity of selected spanish wines in corn oil emulsions. J. Agric. Food Chem., 48: 5581-5587.
SAS Institute, Inc. SAS User''''s Guide: Statistics; SAS Institute, Inc.: Cary, NC, 1985.
Sato, M., Ramarathnam, N., Suzuki, Y., Ohkubo, T., Takeuchi, M. and Ochi, H., 1996. Varietal differences in the phenolic content and superoxide radical scavenging potential of wines from different sources. J. Agric. Food Chem., 44: 37-41.
Serafini, M., Ghiselli, A. and Ferro-Luzzi, A., 1994. Red wine, tea, and antioxidants. Lancet, 344 (8922): 626.
Shahidi, F. and Wanasundara, P. K. J., 1992. Phenolic antioxidants. Crit. Rev. Fiid Sci. Nutr., 32: 67-103.
Shahidi, F. and Wanasundara, U. N., 1996. Stabilization of seal blubber and menhaden oils with green tea catechins. J. Am. Oil Chem. Soc., 73: 1183-1190.
Shen, H. M., Shi, C. Y., Shen, Y. and Ong, C. N., 1996. Detection of elevated reactive oxygen species level in cultured rat hepatocytes treated with aflatoxin B1. Free Radic. Biol. Med., 21 (2): 139-146.
Sheu, S. Y., Liu, C. and Chiang H. C., 1984. The hypoglycemic principle of Mesona procumbens and Orthosiphon stamineus. T''''ai-wan K''''o Hsueh, 38 : 26-31.
Shichel, G., Corsaro, C., Scalia, M., Dibilio, A. J. and Bonomo, R. P., 1991. In vitro scavenger activity of some flavonoids and melanins against O2-. Free Radic. Biol. Med., 11: 1-8.
Shimada. K., Fujikawa. K., Yahara, K. and Nakamura, T., 1992. Antioxidative properties of xanthan on the autoxidation of soybean oil in cyclodextrin emulsion. J. Agric. Food Chem., 40: 945-948.
Shimoni, K, Masuda, S., Furogori, M., Esaki S. and Kinae, N., 1994. Radioprotective affect of antioxidative flavonoids in γ-ray irradiated mice. Carcinogenesis 15:2669-2672.
Simonetti, P., Pietta, P. and Testolin, G., 1997. Polyphenol content and total antioxidant potential of selected italian wines. J. Agric. Food Chem. 45: 1152-1155.
Soleas, G. J., Tomlinson, G., Diamandis, E. P. and Goldberg, D. M., 1997. Relative contributions of polyphenolic constituents to the antioxidant status of wines: development of a predictive model. J. Agric. Food Chem., 45: 3995-4003.
Stadler, R. H., Welti, D. H., Stampfli, A. A. and Fay, L. B., 1996. Thermal decomposition of caffeic acid in model systems: identification of novel tetraoxygenated phenylindan isomers and their stability in aqueous solution. J. Agric. Food Chem., 44: 898-905.
Stillwell, W., Cheng, Y. F. and Wassall, S. R., 1990. Plant sterol inhibition of abscisic acid-induced perturbations in phospholipid bilayers. Biophysica Acta, 1024: 345-351.
Sugihara, N., Arakawa, T., Ohnishi, M. and Furuno, K., ''999. Anti- and pro-oxidative effects of flavonoids on metal-induced lipid hydroperoxide-dependent lipid peroxidation in cultured hepatocytes loader with a-linolenic acid. Free radical Biology & Medicine, 27: 1313-1323.
Taga, M. S., Miller, E. E. and Pratt, D. E., 1984. Chia seeds as a source of natural lipid antioxidants. J. Am. Oil Chem. Soc. 61: 928-931.
Tanaka, T., Kojima, T., Kawamori, T., Wang, A., Suzui, M., Okamoto, K and Mori, H., 1993. Inhibition of 4-nitriquinoline-1-oxide-induced rat tongue carcinogenesis by the naturally occurring plant phenolics caffeic, ellagic, chlorogenic and ferulic acids. Carcinogenesis, 77: 1321-1325.
Terao, J. Karasawa, H., Arai, H., Nagao, A. Suzuki, T. and Takama, K., 1003. Peroxyl radical scavenging activity of caffeic acid and its related phenolic compounds in solution. Biosci. Biotech. Biochem., 57: 1204-1205.
Tournaire, C., Croux, S., Maurette,M. T., Beck, Y., Hocquaux, M., Braun, A. M. and Oliveros, E. 1993. Antioxidant activity of flavonoids : Efficiency of singlet oxygen (1△g) quenching. J. Photochem. Photobiol. B. 19:205-215.
Tanaka, M., Kuei, C. W., Nashima, Y. and Taguchi, T., 1988. Application of antioxidant Maillard reaction products from Histidine and glucose to sardine products. Lbia. 54: 1409-1414.
Tsuda, T., Watanabe, M., Ohshima, K., Norinobu, S., Choi, S. W., Kaeakishi, S. and Osawa, T., 1994. Antioxidative activity of the anthocyanin pigmants cyanidin 3-O-b-D-glucoside and cyanidin. J. Agric. Food Chem., 42: 2407-2410.
Uchida, M., Nakajin, S., Toyoshima, S., and Shinoda, M., 1996. Antioxidative effective effect of sesamol and related compounds on lipid peroxidation. Biol. Pharm. Bull., 19 (4): 623-626.
Velioglu, Y. S., Mazza, G., Gao, L. and Oomah, B. D., 1998. Antioxidant activity and total phenolics in selected fruits, vegetables, and grain products. J. Agric. Food Chem.,46: 4113-4117.
Verhagen, J. V., Haenen, G. R. M. M. and Bast, A., 1996. Nitric oxide radical scavenging by wines. J. Agric. Food Chem., 44: 3733-3734.
Vinson, J. A. and Hontz B. A., 1995. Phenol antioxidant index: comparative antioxidant effectivveness of red and white wines. J. Agric. Food Chem , 43: 401-403.
Wan, X., Nursten, H. E., Cai. Y., Davis, A. L., Wilkins, J. P. G. and Davies, A. P., 1997. A new type of tea pigment-from the chemical oxidation of epicatechin gallate and isolated from tea. J. Sci. Food Agric., 74: 401-408.
Wanasundara, U. N. and Shadhidi, F., 1994a. Canola extracts as an alternative natural antioxidant for canola oil. J. Am. Oil Chem. Soc., 71: 817-822.
Wanasundara, U. N. and Shadhidi, F., 1994b. Stabilization of canola oil with flavonoids. Food Chem., 50: 393-396.
Wang, M., Li, J., Rangayajan, M., Shao, Y., LaVoie, E. J., Huang, T. C., Ho, C. T., 1998. Antioxidative phenolic compounds from Sage (Salvia officinalis). J. Agric. Food Chem.,46: 4869-4873.
Wang, H., Nair, M. G., Strasburg, G. M., Booren, A. M. and Gray, J. I., 1999. Antioxidant polyphenols from Tart Cherries (Prunus cerasus). J. A
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔