跳到主要內容

臺灣博碩士論文加值系統

(34.204.181.91) 您好!臺灣時間:2023/10/01 14:26
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:謝尤敏
論文名稱:台灣地區引起食品中毒之仙人掌桿菌其腸毒素圖譜、PCR檢測與分子分型
論文名稱(外文):Enterotoxigenic profiles, PCR detection and molecular typing for foodpathogenic bacillus cereus strains in Taiwan
指導教授:曾浩洋曾浩洋引用關係
學位類別:博士
校院名稱:國立中興大學
系所名稱:食品科學系
學門:農業科學學門
學類:食品科學類
論文種類:學術論文
論文出版年:2001
畢業學年度:89
語文別:中文
中文關鍵詞:仙人掌桿菌腸毒素細胞毒性分子分型法
相關次數:
  • 被引用被引用:5
  • 點閱點閱:940
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
摘要
仙人掌桿菌(Bacillus cereus)是台灣地區重要食品病源菌之一,此菌在營養生長時產生的腸毒素會造成腹瀉型食品中毒症。在仙人掌桿菌群中除仙人掌桿菌外,還有蘇力菌(B. thuringiensis)、蕈狀桿菌(B. mycoides)與炭疽桿菌(B. anthracis)。為了解仙人掌桿菌群菌株的致病能力,設計不同引子組進行四種腸毒素-Hemolysin BL(HBL), Non-hemolytic enterotoxin(Nhe), Enterotoxin FM(EntFM)及 B. cereus enterotoxin T(BceT)基因的PCR擴增。2株炭疽桿菌無任何一種毒素基因之擴增產物,89株仙人掌桿菌,7株蘇力菌及3株蕈狀桿菌皆能擴增出至少一種腸毒素基因,其中30株仙人掌桿菌及所測試的7株蘇力菌、3株蕈狀桿菌具有hbl操縱子中的三組基因-hblA、hblC及hblD,仙人掌桿菌菌株BCN32能檢測出hblC及hblD但無hblA基因,除仙人掌桿菌菌株BCN32與BCN58有hbl基因外,但BCET-RPLA套組的檢測卻為負反應,其餘hbl基因PCR檢測結果與使用BCET-RPLA套組的檢測結果大致相同。BceT基因在101株仙人掌桿菌群中有45株檢出,entFM基因則有95株菌株能擴增出目標產物,nhe操縱子的檢出率(96%;97/101)最高,以四種腸毒素的檢測結果,可將101株仙人掌桿菌群菌株分成八種腸毒素型,其中最常見的是Profile III,同時具有entFM及nhe基因,有41株仙人掌桿菌(41﹪)。分析仙人掌桿菌群菌株上清濾液對CHO、HEp-2及Vero三細胞株的細胞毒性,仙人掌桿菌、蘇力菌與蕈狀桿菌菌株皆有細胞毒性,炭疽桿菌則無細胞毒性,三細胞株中以HEp-2細胞對於仙人掌桿菌的毒素敏感性最低。仙人掌桿菌菌數需達>5 × 107 cfu/ml以上才能檢測出細胞毒性,細菌培養至穩定期時細胞毒性會下降21 ~ 23。為了解腸毒素基因hbl及nhe的多形性,以PCR-RFLP分析及部份基因序列對,發現兩基因皆有變異存在,但基因序列仍具有相當保留性,多數鹼基對取代是發生在密碼子的第三個位置,並不影響胺基酸序列的表現。根據hbl操縱子中三基因多條序列比對取得親緣關係樹狀圖,可見仙人掌桿菌與蘇力菌的親緣關係很近,而仙人掌桿菌BC13則與蕈狀桿菌菌株BMY1與BMY2則顯示為同一群,應歸於蕈狀桿菌。經由抗生素敏感性分析,質體圖譜,隨機擴增形性分析(RAPD)與脈衝式膠體電場電泳分析83株仙人掌桿菌之分子類。抗生素敏感性分析可得24種抗生素敏感性圖譜,質體圖譜有46型,其中27株仙人掌桿菌仍分離出質體。以NotI剪切之PFGE圖譜有58型,另以5組不同引子組進行RAPD分析,則可得到42至55種不同圖譜,在仙人掌桿菌菌株BCN29 ~ BCN58之區分上,RAPD與PFGE圖譜分析結果大致符合,RAPD具有快速及簡單的優點,而PFGE則是區分性與再現性最高的分類方式。
Abstract
Bacillus cereus is one of the major foodborne pathogens in Taiwan. The diarrheal type of diseases is attributed to enterotoxins produced during vegetative growth of B. cereus. The B. cereus group comprises B. cereus, B. thuringiensis, B. mycoides and B. anthracis. The virulence properties of B. cereus group cells are of interest. One hundred and one strains of B. cereus group were examined for the presence of four enterotoxin genes: the hemolysin BL (hbl), the non-hemolytic enterotoxin (nhe), the Bacillus cereus enterotoxin T (bceT) and enterotoxin FM (entFM) using polymerase chain reaction (PCR). Different PCR primers were developed for the detection of these genes. Two B. anthracis strains were found to be PCR-negative for these four enterotoxin genes. At least one of the four enterotoxin genes was detected in any of the 89 B. cereus, 7 B. thuringiensis and 3 B. mycoides strains. Thirty of 89 B. cereus strains, all of the 7 B. thuringiensis and 3 B. mycoides strains carried hbl operon genes i.e., hblA, hblC and hblD. Two genes of hblC and hblD were detected in B. cereus strain BCN32, but hblA was not found. The results from the amplification of hblC correlated well with results obtained with the BCET-RPLA kit (Oxoid; Denka Seiken, Japan). Except for two strains (B. cereus strains BCN32 and BCN58), all strains that were positive in PCR amplification using primers L2F/L2b were also positive when tested with the BCET-RPLA kit. The bceT gene was found in 45 of the 101 strains of B. cereus group and entFM in 95 strains. The nhe operon was the most common enterotoxin gene detected in strains examined (97/101; 96%). These results showed that there were 8 enterotoxigenic profiles for the 101 strains of B. cereus group collected. Profile III that carrying the entFM and nhe genes was the most prevalent type (41/101; 41%). Culture supernatants from all strains of B. cereus, B. thuringiensis and B. mycoides were cytotoxic to HEp-2, CHO and Vero cells. Of the three cell lines tested, the HEp-2 cell was less susceptible to the enterotoxin of B. cereus than the CHO and Vero cells. Cell cytotoxicity was detectable only after the cell concentration of B. cereus reached >5 × 107 cfu/ml and the Cytotoxicity was about 1/2 ~ 1/8 at the stationary phase. PCR-RFLP analysis and PCR-directed sequencing were performed to examine the heterogeneity of the hbl and nhe genes. The PCR products of hbl genes were found to be heterogeneous by the PCR-RFLP analysis (17/40; 42%). PCR-RFLP analysis also confirmed that there was genetic diversity within the nheA and nheB genes. The sequences different genes of hbl and nhe were found to be highly conserved for different strains. However, most of the base pair substitution occurred at the third base position of the genetic codon and did not affect the amino acid sequence. The hblA, hblC and hblD sequences were used to construct a phylogenetic tree. The strains of B. thuringiensis and B. cereus were closely related species, also B. cereus strain BC13 and B. mycoides strains BMY1, BMY3 were revealed to be closely related species. B. cereus strains were typed by antibiotic susceptibility testing, plasmid profile, RAPD (Randomly Amplified Polymorphic DNA) and PFGE (Pulsed-field gel electrophoresis).Of the 83 B. cereus strains tested, there were 24 antibiogram and 46 plasmid profiles. Plasmid was not founded in 27 B. cereus strains. Digestion with NotI generated 58 PFGE profiles for these 83 B. cereus strains. RAPD with 5 different primers yielded 42 to 55 RAPD patterns. Results obtained from RAPD and PFGE were closely related among the B. cereus strains BCN29 ~ BCN58. Although the RAPD method was rapid and easier to perform, PFGE produced most discriminative and reproducible results.
目錄
摘要
Abstract
第一章.文獻整理
一.桿菌屬(Bacillus spp)的分類
二.仙人掌桿菌(B.cereus)的一般特性
三Bacillus cereus group
四.B.cereus 引起之食品中毒症與其他臨床症狀
五.Bcereus的毒性因數
(一)嘔吐型毒素(Emetic toxin)
(二)腹瀉型腸毒素(Diarrheal enterotoxin)
(三)其他毒素分子
1.溶備素(Hemolysis)
2.磷脂?(phospholipases C)
六.B.cereus毒素檢測方法
(一)嘔吐型毒素 
(二)腸毒素
七.脈動式膠體電泳(Pulsed-field gel electrophoresis.PFGE)
八.隨機擴增多形性DNA(Randomly Amplified Polymerohic DNA:RAPD)
九.質體圖譜的分析(Plasmid profilc analysis)
十.抗生素敏感性分析(Antibiotic susceptibility testing)
第二章仙人掌桿菌腸毒素之檢測
壹.前言
貳材料與方法
一.實驗材料
1.菌株
2.培養基
3.動物細胞株
4.溶液之配置
5.儀器
6.藥品
二.實驗方法
1.DNA之抽取
2.PCR引子組
3.聚合?連鎖反應
4.不連續溶血試驗
5.BCET-RPLA套組之檢測
6.細胞毒性分析
參.結果與討論
一.仙人掌桿菌HBL腸毒素的檢測
二.不連續溶血試驗
三.仙人掌桿菌其他腸毒素之基因檢測
四.仙人掌桿菌之細胞毒性分析
肆.結論
第三章.HBL腸毒素與Nhe腸毒素基因之PCR-restriction Fagment length polymorphism分析及部分序列分析
壹.前言
貳材料與方法
一.實驗材料
1.菌株
2.DNA與PCR產物回收與純化套組
3.藥品
4.儀器
二實驗方法
1.PCR產物的純化
2.限制?剪切PCR產物
3.PCR產物定序
4.定序分析
參.結果與討論
一.HRI腸毒素基因
1.PCR-RFLP之分析
2.PCR產物之序列分析
3.PCR-RFLP與基因序列之比對
4.Hm1/Hm2引子組PCR產物之序列分析
二.Nhe腸毒素基因PCR-RFLP分析與序列分析
肆.結論
第四章.仙人掌桿菌分子分型之研究
壹.前言
貳材料與方法
一.實驗材料
1. 菌株
2. 緩衝溶液之分配
3. 藥品
4. 儀器
二.實驗方法
1.抗生素敏感性分析
2.脈動式電場膠體電泳圖譜
3.隨機擴增多形性DNA(PAPD)分析法
4.質體抽取
參.結果與討論
一.抗生素敏感性分析
二.質體圖譜分析
三.PAPD圖譜分析
四.PFGE圖譜分析
五.抗生素敏感性圖譜.質體圖譜.PAPD圖譜與PFGE圖譜的比較
肆.結論
參考文獻
參考文獻
中國國家標準類編:食品微生物之檢驗法-仙人掌桿菌之檢驗,CNS總號12540類號N6212。
許勝傑。1997。仙人掌桿菌群及其溶血素BL與腸毒素檢測用聚合酶方法之發展與應用。國立中興大學食品科學研究所碩士論文。
陳炎鍊。1998。仙人掌桿菌群之毒性與部份16S rRNA基因之比較以及多套式PCR之應用。國立中興大學食品科學研究所碩士論文。
龐仁傑。2000。仙人掌桿菌與蘇力菌毒性之檢測以及蘇力菌殺蟲活性試驗。國立中興大學食品科學研究所碩士論文。
Agata, N., M. Mori, M. Ohta, S. Suwan, I. Ohtani, and M. Isobe. 1994. A novel dodecadepsipeptide, cereulide, isolated from Bacillus cereus causes vacuole formation in HEp-2 cells. FEMS Microbiol. Lett. 121:31-34.
Agata, N., M. Ohta, Y. Arakawa, and M. Mori. 1995a. The bceT gene of Bacillus cereus encodes an enterotoxic protein. Microbiology 141:983-988.
Agata, N., M. Ohta, M. Mori, and M. Isobe. 1995b. A novel dodecadepsipeptide, cereulide, is an emetic toxin of Bacillus cereus. FEMS Microbiol. Lett. 129:17-20.
Agata, N., M. Ohta, and M. Mori. 1996. Production of an emetic toxin, cereulide, is associated with a specific class of Bacillus cereus. Curr. Microbiol. 33:67-69.
Amodio-Cocchieri, R., T. Cirillo, F. Villani, and G. Moschetti. 1998. The occurrence of Bacillus cereus in fast foods. Int. J. Food Sci. Nutri. 49:303-308.
Andersen, G.L., J.M. Simchock, and K. H. Wilson. 1996. Identification of a region of genetic variability among Bacillus anthracis strains and related species. J. Bacteriol. 178:377-384.
Andersson, A., B. Svensson, A. Christiansson, and U. Rönner. 1999. Comparison between automatic ribotyping and random amplified polymorphic DNA analysis of Bacillus cereus isolates from the dairy industry. Int. J. Food Microbiol. 47:147-151.
Andersson, M.A., R. Mikkola, J. Helin, M.C. Andersson, and M. Salkinoja-Salonen. 1998. A novel seneitive bioassay for detection of Bacillus cereus emetic toxin and related depsipeptide ionophores. Appl. Environ. Microbiol. 64:1338-1343.
Asano, S.-I., Y. Nukumizu, H. Bando, T. Iizuka, and T. Yamamoto. 1997. Cloning of novel enterotoxin genes from Bacillus cereus and Bacillus thuringiensis. Appl. Environ. Microbiol. 63:1054-1057.
Ash, C., J. A.Farrow, M. Dorsch, E. Stackebrandt, and B.D. Collins. 1991. Comparative analysis of Bacillus anthracis, Bacillus cereus, and related species on the basis of reverse transcriptase sequencing of 16S rRNA. Int. J. Syst. Bacteriol. 41:343-346.
Ash, C., and M.D. Collins. 1992. Comparative analysis of 23S ribosomal RNA gene sequences of Bacillus anthracis and emetic Bacillus cereus determined by PCR-direct sequencing. FEMS Microbiol. Lett. 94:75-80.
Baida, G.E., and N.P. Kuzmin. 1996. Mechanism of action of hemolysin III from Bacillus cereus. Biochim. Biophys. Acta 1284:122-124.
Baida, G., Z.I. Budarina, N.P. Kuzmin, and A.S. Solonin. 1999. Complete nucleotide sequence and molecular characterization of hemolysin II gene from Bacillus cereus. FEMS Microbiol. Lett. 180:7-14.
Beattie, S.H., and A.G. Williams. 1999. Detection of toxigenic strains of Bacillus cereus and other Bacillus spp. with an improved cytotoxicity assay. Lett. Appl. Microbiol. 28:221-225.
Beecher, D.J., and J.D. Macmillan. 1990. A novel biocomponent hemolysin from Bacillus cereus. Infect. Immun. 58:2220-2227.
Beecher, D.J., and J.D. Macmillan. 1991. Characterization of the components of hemolysin BL from Bacillus cereus. Infect. Immun. 59:1778-1784.
Beecher, D.J., and A.C.L. Wong. 1994a. Identification of hemolysin BL-producing Bacillus cereus isolates by a discontinuous hemolytic pattern in blood agar. Appl. Environ. Microbiol. 60:1646-1651.
Beecher, D.J., and A.C.L. Wong. 1994b. Identification and analysis of the antigens detected by two commercial Bacillus cereus diarrheal enterotoxin immunoassay kits. Appl. Environ. Microbiol. 60:4614-4616.
Beecher, D.J., and A.C.L. Wong. 1994c. Improved purification and characterization of Hemolysin BL, a hemolytic dermonecrotic vascular permeability factor from Bacillus cereus. Infect. Immun. 62:980-986.
Beecher, D.J., J.L. Schoeni, and A.C.L. Wong. 1995. Enterotoxic activity of Hemolysin BL from Bacillus cereus. Infect. Immun. 63:4423-4428.
Beecher, D.J., and A.M.C. Wong. 2000. Tripartite haemolysin BL: isolation and characterization of two distinct homologous sets of components from a single Bacillus cereus isolate. Microbiology 146:1371-1380.
Bidet, P., V. Lalande, B. Salauze, B. Burghoffer, V. Avesani, M. Delmee, A. Rossier, F. Barbut, and J.-C. Petit. 2000. Comparison of PCR-ribotyping, arbitrarily primed PCR, and pulsed-field gel electrophoresis for typing Clostridium difficile. J. Clin. Microbiol. 2000. 38:2484-2487.
Birren, B., and E. Lai. 1993. Pulsed field gel electrophoresis: a practical guide. Academic Press, San Diego, Califonia.
Brousseau, R., A. Saint-Onge, G. Préfontaine, L. Masson, and J. Cabana. 1993. Arbitrary primer polymerase chain reaction, a powerful method to identify Bacillus thuringiensis serovars and strains. Appl. Environ. Microbiol. 59:114-119.
Buchanan, R.L., and F.J. Schultz. 1992. Evaluation of the Oxoid BECT-RPLA kit for the detection of Bacillus cereus diarrheal enterotoxin as compared to cell culture cytotonicity. J. Food Protect. 55:440-443.
Buchanan, R.L., and F.J. Schultz. 1994. Comparison of the Tecra VIA kit, Oxoid BCET-RPLA kit and CHO cell culture assay for the detection of Bacillus cereus diarrhoeal enterotoxin. Lett. Appl. Microbiol. 19:353-356.
Carlson, C.R., A. Grønstad, and A.—B. Kolstø. 1992. Physical maps of the genomes of three Bacillus cereus strains. J. Bacteriol. 174:3750-3756.
Carlson, C.R., D.A. Caugant, and A. —B. Kolstø. 1994. Genotypic diversity among Bacillus cereus and Bacillus thuringiensis strains. Appl. Environ. Microbiol. 60:1719-1725.
Carlson, C.R., T. Johansen, and A.-B. Kolstø. 1996. The chromosome map of Bacillus thuringiensis subsp. canadensis HD224 is highly similar to that of the Bacillus cereus type strain ATCC 14579. FEMS Microbiol. Lett. 141:163-167.
Christiansson, A. 1993. Enterotoxin production in milk by Bacillus cereus: a comparison of methods for toxin detection. Neth. Milk Dairy J. 47:79-87.
Christiansson, A., A.S. Naidu, I. Nilsson, T. Wadström, and H.E. Pettersson. 1989. Toxin production by Bacillus cereus dairy isolates in milk at low temperatures. Appl. Environ. Microbiol. 55:2595-2600.
Chu, G., D. Vollrath, and R.W. Davis. 1986. Separation of large DNA molecules by contour-clamped homogeneous electric fields. Science 234:1582-1585.
Chung, K.T., and H.L. Sun. 1986. Distribution and characteristics of Bacillus cereus isolated form rice in Taiwan. J. Food Sci. 51:1208-1212.
Claus, D., and R.C.W. Berkley. 1986. Genus Bacillus Cohn 1872, p1105-1139. In P.H.A. Smith (ed.), Bergey’s manual of systematic bacteriology, vol.2. The Williams & Wilkins Co., Baltimore.
Coolbaugh, J.C., and R.P. Williams. 1978. Production and characterization of two hemolysins of Bacillus cereus. Can. J. Microbiol. 24:1289-1295.
Coonrod, J.D., P.J. Leadley, and T.C. Eickhoff. 1971. Antibiotic susceptibility of Bacillus species. J. Infect. Dis. 123:102-105.
Dahl, M.K. 2000. Bacillus. p113-158. In Encyclopedia of Food Microbiology. Edited by R.K. Robinson, C.A. Batt & P.D. Patel. Academic Press.
Damgaard, P. H. 1995. diarrhoeal enterotoxin production by strains of Bacillus thuringiensis isolated from commercial Bacillus thuringiensis-based insecticides. FEMS Immunol. Med. Microbiol. 18:47-53.
Damgaard, P.H., H.D. Larsen, B.M. Hansen, J. Bresciani, and K. Jørgensen. 1996. Enterotoxin-producing strains of Bacillus thuringiensis isolated from food. Lett. Appl. Microbiol. 23:146-150.
Day, T.L., S.R. Tatani, S. Notermans, and R.W. Bennett. 1994. A comparison of ELISA and RPLA for detection of Bacillus cereus diarrhoeal enterotoxin. J. Appl. Bacteriol. 77:9-13.
DeBuono, B. A., J. Brondum, J.M. Kramer, R.J. Gilbert, and S. M. Opal. 1988. Plasmid, serotypic, and enterotoxin analysis of Bacillus cereus in an outbreak setting. J. Clin. Microbiol. 26:1571-1574.
Dietrich, R., C. Fella, S. Strich, and E. Märtlbauer. 1999. Production and characterization of monoclonal antibodies against the hemolysin BL enterotoxin complex produced by Bacillus cereus. Appl. Environ. Microbiol. 65:4470-4474.
Drobniewski, F.A. 1993. Bacillus cereus and related species. Clin. Microbiol. Rev. 6:324-338.
Ellison, A., C.E.R. Dodd, and W.M. Waites. 1989. Use of plasmid profiles to differentiate between strains of Bacillus cereus. Food Microbiol. 6:93-98.
Ellsworth, D.L., K.D. Rittenhouse, and R.L. Honeycutt. 1993. Artifactual variation in randomly amplified Polymorphic DNA banding patterns. BioTech. 14:214-2117.
Fermanian, C., C. Lapeyre, J.-M. Frémy, and M. Claisse. 1996. Production of diarrheal toxin by selected strains of Bacillus cereus. Int. J. Food Microbiol. 30:345-358.
Fermanian, C., C. Lapeyre, J.-M. Frémy, and M. Claisse. 1997. Diarrhoeal toxin production at low temperature by selected strains of Bacillus cereus. J. Dairy Res. 64:551-559.
Fletcher, P., and N.A. Logan. 1999. Improved cytotoxicity assay for Bacillus cereus diarrhoeal enterotoxin. Lett. Appl. Microbiol. 28:394-400.
Gentry, M.K., and J.M. Dalrymple. 1980. Quantitative microtiter cytotoxicity assay for Shigella toxin. J. Clin. Microbiol. 12:361-366.
Gilmore, M.S., A.L. Cruz-Rodz, M. Leimeister-Wächer, J. Kreft, and W. Goebel. 1989. A Bacillus cereus cytolytic determinant, cereolysin AB, which comprises the phospholipase C and sphingomyelinase genes: nucleotide sequence and genetic linkage. J. Bacteriol. 171:744-753.
Goepfert, J.M., W. M. Spira, and H.U. Kim. 1972. Bacillus cereus food poisoning organism. A review. J. Milk food Technol. 35:213-227.
Gordon, R.E., W.C. Haynes, and C.H.-N. Pang. 1973. The genus Bacillus. United States Department of Agriculture Agricultural Handbook No.427. U.S. Government Printing Office, Washington, D.C.
Granum, P.E., S. Brynestad, and J.M. Kramer. 1993. Analysis of enterotoxin production by Bacillus cereus from dairy products, food poisoning incidents and non-gastrointestinal infections. Int. J. Food Microbiol. 17:269-279.
Granum, P.E., S. Brynestad, K. O’Sullivan, and H. Nissen. 1993. Enterotoxin form Bacillus cereus: production and biochemical characterization. Neth. Milk Dairy J. 47:63-70.
Granum, P.E. 1994. Bacillus cereus and its toxins. J. Appl. Bacteriol. Symp. Suppl. 76:61S-66S.
Granum, P.E., A. Andersson, C. Gayther, M. te. Giffel, H. Larsen, T. Lund, and K. O’Sullivan. 1996. Evidence for a further enterotoxin complex produced by Bacillus cereus. FEMS Microbiol. Lett. 141:145-149.
Granum, P.E., K. O’Sullivan, and T. Lund. 1999. The sequence of the non-haemolytic enterotoxin operon from Bacillus cereus. FEMS Microbiol. Lett. 177:225-229.
Hansen, B.M., and N.B. Hendriksen. 2001. Detection of enterotoxic Bacillus cereus and Bacillus thuringiensis strains by PCR analysis. Appl. Environ. Microbiol.67:185-189.
Hauge, S. 1955. Food poisoning caused by aerobic sporeforming bacilli. J. Appl. Bacteriol.18:591.
Heinrichs, J.H., D.J. Beecher, J.D. Macmillan, and B.A. Zilinskas. 1993. Molecular cloning and characterization of the hblA gene encoding the B component of hemolysin BL from Bacillus cereus. J. Bacteriol. 175:6760-6766.
Helgason, E., D.A. Caugant, M.M. Lecadet, Y. Chen, J. Mahillon, A. Lövgren, I. Hegna, K. Kvaløy, and A.-B. Kolstø. 1998. Genetic diversity of Bacillus cereus/B. thuringiensis isolates from natural sources. Curr. Microbiol. 37:80-87.
Helgason, E., O. A. Økstad, D.A. Caugant, H.A. Johansen, A. Fouet, M. Mock, I. Hegna, and A.-B. Kolstø. 2000. Bacillus anthracis, Bacillus cereus, and Bacillus thuringiensis-one species on the basis of genetic evidence. Appl. Environ. Microbiol. 66:2627-2630.
Hoolbrook, R., and J.M. Anderson. 1980. An improved selective and diagnostic medium for the isolation and enumeration of Bacillus cereus in foods. Can. J. Microbiol. 263:753-759.
Hughes, A., B. Bartholomew, J.C. Hardy, and J.M. Kramer. 1988. Potential application of a HEp-2 cell assay in the investigation of Bacillus cereus emetic-syndrome food poisoning. FEMS Microbiol. Lett. 52:7-12.
Hunter, P.R., and M.A. Gaston.1988. Numerical index of the discriminatory ability of typing systems: an application of Simpson’s index of diversity. J. Clin. Microbiol. 26:2465-2466.
Jackson, S.G. 1993. Rapid screening test for enterotoxin-producing Bacillus cereus. J. Clin. Microbiol. 31:972-974.
Jackson, S.G., R.B. Goodbrand, R. Ahmed, and S. Kasatiya. 1995. Bacillus cereus and Bacillus thuringiensis isolated in a gastroenteritis outbreak investigation. Lett. Appl. Microbiol. 21:103-105.
Johansen, T., F.B. Haugli, H. Ikezawa, and C. Little. 1988. Bacillus cereus strains SE-1; nucleotide sequence of the sphingomyelinase C gene. Nucleic Acid Res. 16:10370.
Johansen, T., T. Holm, P. H. Guddal, J. Sletten, F.B. Haugli, and C. Little. 1988. Cloning and sequencing of the gene encoding the phosphatidylcholine-preferring phospholipase C of Bacillus cereus. Gene 65:293-304.
Johnson, K.M., C.L. Nelson, and F.F. Busta. 1983. Influence of temperature on germination and grown of spores of emetic and diarrheal strains of Bacillus cereus in broth medium and in rice. J. Food. Sci. 48:286-287.
Kado, C.I., and S. T. Liu. 1981. Rapid procedure for detection and isolation of large and small plasmids. J. Bacteriol. 145:1365-1373.
Kim, H.U., and J. M. Goepfert. 1971. Occurrence of Bacillus cereus in selected dry food products. J. Milk Food Technol. 34:12-15.
Kim, Y.R., J. Czajka, and C.A. Batt. 2000. Development of a fluorogenic probe-based PCR assay for detection of Bacillus cereus in nonfat dry milk. Appl. Environ. Microbiol. 66:1453-1459.
Klotz, C., and B.H. Zimm. 1972. Retardation times of deoxyribonucleic acid solutions. II. Improvements in apparatus and theory. Macromolecules 5:471-481.
Kodjo, A., L. Villard, C. bizet, J.L. Martel, R. Sanchis, E. Borges, D. Gauthier, F. Maurin, and Y. Richard. 1999. Pulsed-field gel electrophoresis is more efficient than ribotyping and random amplified Polymorphic DNA analysis in discrimination of Pasteurella haemolytica strains. J. Clin. Microbiol. 37:380-385.
Kolstø, A.-B., A. Grøbstad, and H. Oppegaard. 1990. Physical map of the Bacillus cereus chromosome. J. Bacteriol. 172:3821-3825.
Kotiranta, A., K. Lounatmaa, and M. Haapasalo. 2000. Epidemiology and pathogenesis of Bacillus cereus infections. Microbes Infect. 2:189-198.
Kramer, J.M., and R.J. Gilbert. 1989. Bacillus cereus and other Bacillus species, p. 21-70. In M. P. Doyle (ed.), Foodborne bacterial pathogens. Marcel Dekker, Inc., New York.
Lindbäck, T., O. A. Økstad, A.-L. Rishovd, and A.-B. Kolstø. 1999. Insertional inactivation of hblC encoding the L2 component of Bacillus cereus ATCC 14579 haemolysin BL strongly reduces enterotoxigenic activity, but not the haemolytic activity against human erythrocytes. Microbiology 145:3139-3146.
Liu, P.Y.F., S. C. Ke, and S. L. Chen. 1997. Use of pulsed-field gel electrophoresis to investigate a pseudo-outbreak of Bacillus cereus in a pediatric unit. J. Clin. Microbiol. 35:1533-1535.
Logan, N.A., and R.C.W. Berkeley. 1984. Identification of Bacillus strains using the API system. J. Gen. Microbiol. 130:1871-1882.
Louie, M., P. Jayaratne, I. Luchsieger, J. Devenish, J. Yao, W. Schlech, and A. Simor. 1996. Comparison of ribotyping, arbitrarily primed PCR, and pulsed-field gel electrophoresis for molecular typing of Listeria monocytogenes. J. Clin. Microbiol. 34:15-19.
Lund, T., and P.E. Granum. 1996. Characterisation of a non-haemolytic enterotoxin complex from Bacillus cereus isolated after a foodborne outbreak. FEMS Microbiol. Lett. 141:151-156.
Lund, T., and P.E. Granum. 1997. Comparison of biological effect of the two different enterotoxin complexes isolated from three different strains of Bacillus cereus. Microbiology, 143:3329-3336.
Lund, T., and P.E. Granum. 1999. The 105-kDa protein component of Bacillus cereus non-haemolytic enterotoxin (Nhe) is a metalloprotease with gelatinolytic and collagenolytic activity. FEMS Microbiol. Lett. 178:355-361.
Mahakarnchanakul, W., and L.R. Beuchat. 1999. Influence of temperature shifts on survival, growth, and toxin production by psychrotrophic and mesophilic strains of Bacillus cereus in potatoes and chicken gravy. Int. J. Food Microbiol. 47:179-187.
Mäntynen, V., and K. Lindström. 1998. A rapid PCR-based DNA test for enterotoxic Bacillus cereus. Appl. Environ. Microbiol. 64:1634-1639.
Maslow, J.N., M.E. Mulligan, and R.D. Arbeit. 1993. Molecular Epidemiology: application of contemporary techniques to the typing of microorganisms. Clin. Infect. Dis. 17:153-164.
Matar, G.M., T.A., Slienam, and N.H. Nabbut. 1996. Subtyping of Bacillus cereus by total cell protein patterns and arbitrary primer polymerase chain reaction. Eur. J. Epidemiol. 12:309-314.
McClelland, M., R. Jones, Y. Patel, and M. Nelson. 1987. Restriction endonucleases for pulsed mapping of bacterial genomes. Nucleic Acids Res. 15:5985-6005.
Melling, J., B.J. Capel, P.C.B. Turnbull, and R.J. Gilbert. 1976. Identification of a novel enterotoxigenic activity associated with Bacillus cereus. J. Clin. Path. 29:938-940.
Melling, J., and B.J. Capel. 1978. Characteristics of Bacillus cereus emetic toxin. FEMS Microbiol. Lett. 4:133-135.
Meunier, J.-R., and P.A.D. Grimont. 1993. Factors affecting reproducibility of random amplified Polymorphic DNA fingerprinting. Res. Microbiol. 144:373-379.
Mikami, T., T. Horikawa, T. Murakami, T. Matsumoto, A. Yamakawa, S. Murayama, S. Katagiri, K. Shinagawa, and M. Suzuki. 1994. An improved method for detecting cytostatic toxin (emetic toxin) of Bacillus cereus and its application to food samples. FEMS Microbiol. Lett. 119:53-58.
Mossel, D.A.A., M. J. Koopman, and E. Jongerius. 1967. Enumeration of Bacillus cereus in foods. Appl. Microbiol. 15:650-653.
Muralidharan, K., and E.K. Wakeland. 1993. Concentration of primer and template qualitatively affects products in random-amplified Polymorphic DNA PCR. BioTech. 14:362, 364.
National Committee for Clinical Laboratory Standards: Performance Standards for Antimicrobial Disc Susceptibility Tests 1998. Approved standard M2-A6. NCCLS, Villanova, PA, U.S.A.
Nilsson, J., B. Svensson, K. Ekelund, and A. Christiansson. 1998. A RAPD-PCR method for large-scale typing of Bacillus cereus. Lett. Appl. Microbiol. 27:168-172.
Nishikawa, Y., J.M. Kramer, M. Hanaoka, and A. Yasukawa. 1996. Evaluation of serotyping, biotyping, plasmid banding pattern analysis, and HEp-2 vacuolation factor assay in the epidemiological investigation of Bacillus cereus emetic-syndrome food poisoning. Int. J. Food Microbiol. 31:149-159.
Notermans, S., and C.A. Batt. 1998. A risk assessment approach for food-borne Bacillus cereus and its toxins. J. Appl. Microbiol. Symp. Suppl. 84:51S-61S.
Olive, D.M., and P. Bean. 1999. Principles and applications of methods for DNA-based typing of microbial organisms. J. Clin. Microbiol. 37:1661-1669.
Ombui, J.N., J.M. Mathenge, A.M. Kimotho, J.K. Macharia, and G. Nduhiu. 1996. Frequency of antimicrobial resistance and plasmid profiles of Bacillus cereus strains isolated from milk. East African Med. J. 73:380-384.
Ombui, J.N., H. Schmieger, M.M. Kagiko, and S.M. Arimi. 1997. Bacillus cereus may produce two or more diarrheal enterotoxins. FEMS Microbiol. Lett. 149:245-248.
Pan, T.M., T.K. Wang, C.L. Lee, S.W. Chien, and C. B. Horng. 1997. Food-borne disease outbreaks due to bacteria in Taiwan, 1986 to 1995. J. Clin. Microbiol. 35:1260-1262.
Park, Y., and R.J. Kohel. 1994. Effect of concentration of MgCl2 on random-amplified DNA polymorphism. BioTech. 16:652-655.
Patrick, C.C., C. Langston, and C. J. Baker. 1989. Bacillus species infections in neonates. Rev. Infect. Dis. 11:612-615.
Perani, M., A.H. Bishop, and A. Vaid. 1998. Prevalence of β-exotoxin, diarrhoeal toxin and specific δ-endotoxin in natural isolates of Bacillus thuringiensis. FEMS Microbiol. Lett. 160:55-60.
Pirttijärvi, T.S.M., M.A.Andersson, A.C. Scoging, and M.S. Salkinoja-Salonen. 1999. Evaluation of methods for recognising strains of the Bacillus cereus group with food poisoning potential among industrial and environmental contaminants. System. Appl. Microbiol. 22:133-144.
Prüβ, B.M., R. Dietrich, B. Nibler, E. Märtlbauer, and S. Scherer. 1999. The hemolytic enterotoxin HBL is broadly distributed among species of the Bacillus cereus group. Appl. Environ. Microbiol. 65:5436-5442.
Renders, N., U. Römling, H. Verbrugh, and A. van Belkum. 1996. Comparative typing of Pseudomonas aeruginosa by random amplification of Polymorphic DNA or pulsed-field gel electrophoresis of DNA macrorestriction fragments. J. Clin. Microbiol 34:3190-3195.
Reva, O.N., V.A. Vyunitskaya, S.R. Reznik, I.A. kozachko, and V.V. Smirnov. 1995. Antibiotic susceptibility as a taxonomic characteristic of the genus Bacillus. Int. J. System. Bacteriol. 45:409-411.
Rivera, A.M.G., P.E. Granum, and F.G. Priest. 2000. Common occurrence of enterotoxin and enterotoxicity in Bacillus thuringiensis. FEMS Microbiol. Lett. 190:151-155.
Ronimus, R.S., L.E. Parker, and H.W. Morgan. 1997. The utilization of RAPD-PCR for identifying thermophilic and mesophilic Bacillus species. FEMS Microbiol. Lett. 147:75-79.
Rowan, N.J., and J.G. Anderson. 1998. Diarrhoeal enterotoxin production by psychrotrophic Bacillus cereus present in reconstituted milk-based infant formulae (MIF). Lett. Appl. Microbiol. 26:161-165.
Rusul, G., and N. H. Yaacob. 1995. Prevalence of Bacillus cereus in selected foods and detection of enterotoxin using TRCRA-VIA and BCET-RPLA. Int. J. Food Microbiol. 25:131-139.
Ryan, P.A., J.D. Macmillan, and B.A. Zilinskas. 1997. Molecular cloning and characterization of the genes encoding the L1 and L2 components of hemolysin BL from Bacillus cereus. J. Bacteriol. 179:2551-2556.
Sakurai, N., K.A. Koike, Y. Irie, and H. Hayashi. 1994. The rice culture filtrate of Bacillus cereus isolated from emetic-type food poisoning causes mitochondrial swelling in a HEp-2 cell. Microbiol. Immun. 38:337-343.
Schiemann, D. A.1978. Occurrence of Bacillus cereus and the bacteriological quality of Chinese ‘take-out’ foods. J. Food Protect. 41:450-454.
Schoeni, J.L., and A.C.L. Wong. 1999. Heterogeneity observed in the components of hemolysin BL, an enterotoxin produced by Bacillus cereus. Int. J. Food Microbiol. 53:159-167.
Schraft, H., M. Steele, B. McNab, J. Odumeru, and M.W. Griffiths. 1996. Epidemiological typing of Bacillus spp. isolated from food. Appl. Environ. Microbiol. 62:4229-4232.
Schwartz, D.C., and C. R. Cantor. 1984. Separation of yeast chromosome-sized DNAs by pulsed field gradient gel electrophoresis. Cell 337:67-75.
Shinagawa, K., J. Sugiyama, T. Terada, N. Matsusaka, and S. Sugii. 1991. Improved methods for purification of an enterotoxin produced by Bacillus cereus. FEMS Microbiol Lett. 80:1-6.
Sliman, R., S. Rehm, and D.M. Shlaes. 1987. Serious infections caused by Bacillus species. Medicine 66:218-223.
Sloos, J.H., L. Dijkshoorn, L. Vogel, and C.P.A. VAN Boven. 2000. Performance of phenotypic and genotypic methods to determine the clinical relevance of serial blood isolates of Staphylococcus epidermidis in patients with septicemia. J. Clin. Microbiol. 38:2488-2493.
Smith, N.R., R. E. Gordon, and F.E. Clark. 1952. Aerobic spore-forming bacteria. U.S. Department of Agriculture Monograph 16. U.S. Government Printing Office, Washington, D. C.
Sobral, B.,W.S., R.I. Honeycutt, and A.G. Atherly. 1991. The genomes of the family Rhizobiaceae: size, stability, and rarely cutting restriction endonucleases. Am. Soc. for Microbiol. 173:704-709.
Somerville, H.J., and M.L. Jones. 1972. DNA competition studies within the Bacillus cereus group of Bacilli. J. Gen. Microbiol. 73:257-265.
Spira, W.M., and J.M. Gopfert. 1972. Bacillus cereus-induced fluid accumulation in rabbit ileal loops. Appl. Microbiol. 24:341-348.
Stenfors, L.P., and P.E. Granum. 2001. Psychrotolerant species form the Bacillus cereus group are not necessarily Bacillus weihenstephanensis. FEMS Microbiol. Lett. 197:223-228.
Stephan, R. 1996. Randomly amplified polymorphic DNA (RAPD) assay for genomic fingerprinting of Bacillus cereus isolates. Int. J. Food Microbiol. 31:311-316.
Szabo, R.A., J.I. Speirs, and M. Akhtar. 1991. Cell culture detection and conditions for production of a Bacillus cereus heat-stable toxin. J. Food Protect. 54:272-276.
Thompson, N.E., M.J. Ketterhagen, M.S. Bergdoll, and E.J. Schantz. 1984. Isolation and some properties of an enterotoxin produced by Bacillus cereus. Infect. Immun. 43:887-894.
Titball, R.W. 1993. Bacterial phospholipases C. Microbiol. Rev. 57:347-366.
Turnbull, P.C.B. 1976. Studies on the production of enterotoxins by Bacillus cereus. J. Clin. Path. 29:941-948.
Turnbull, P.C.B., and J.M. Kramer. 1983. Non-gastrointestinal Bacillus cereus infections: an analysis of exotoxin production by strains isolated over a two-year period. J. Clin. Pathol.36:1091-1096.
Turnbull, P.C.B., J.M. Kramer, K. Jorgensen, R.J. Gilbert, and J. Melling. 1979. Properties and production characteristics of vomiting, diarrheal, and necrotizing toxins of Bacillus cereus. Am. J. Clin. Nutri. 32:219-228.
Turnbull, P.C.B., K. Jørgensen, J.M. Kramer, R.J. Gilbert, and J. M. Parry. 1979. Severe clinical conditions associated with Bacillus cereus and the apparent involvement of exotoxins. J. Clin. Path. 32:289-293.
Tynkkynen, S., R. Satokari, M. Saarela, T. Mattila-Sandholm, and M. Saxelin. 1999. Comparison of ribotyping, randomly amplified Polymorphic DNA analysis, and pulsed-field gel electrophoresis in typing of Lactobacillus rhamnosus and L. casei strains. Appl. Environ. Microbiol. 65:39008-3914.
Välsänen, N.J. Mwalsumo, and M.S. Salkinoja-Salonen. 1991. Differentiation of dairy strains of the Bacillus cereus group by phage typing, minimum growth temperature, and fatty acid analysis. J. Appl. Bacteriol. 70:315-324.
Veld, P.H.I., W.S. Ritmeester, E.H.M. Delfgou-van Asch, J.B. Dufrenne, K. Wernars, E. Smit, and F.M. van Leusden. 2001. Detection of genes encoding for enterotoxins and determination of the production of enterotoxins by HBL blood plates and immunoassays of psychrotrophic strains of Bacillus cereus isolated from pasteurised milk. Int. J. Food Microbiol. 64:63-70.
Voskuil, M.I., and G.H. Chambliss. 1993. Rapid isolation and sequencing of purified plasmid DNA form Bacillus subtilis. Appl. Environ. Microbiol. 59:1138-1142.
Welsh, J., and M. McClelland. 1990. Fingerprinting genomes using PCR with arbitrary primers. Nucleic Acids Res. 18:7213-7218.
Williams, J.G.K., A.R. Kubelik, K.J. Livark, J.A. Rafalski, and S.V. Tingey. 1990. DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucleic Acids Res. 18:6531-6535.
Wong, H.C., M. H. Chang, and J.Y. Fan. 1988. Incidence and characterization of Bacillus cereus isolates contaminating dairy products. Appl. Environ. Microbiol. 54:699-702.
Yamada, A., N. Tsukagoshi, S. Udaka, T. Sasaki, S. Makino, S. Nakamura, C. Little, Tomita, M., and H. Ikezawa. 1988. Nucleotide sequence and expression in Escherichia coli of the gene coding for sphingomyelinase of Bacillus cereus. Eur. J. Biochem. 175:213-220.
Yu, K., and K.P. Pauls. 1992. Optimization of the PCR program for RAPD analysis. Nucleic Acids Res. 20:2606.
Zahner, V., H. Momen, C.A. Salles, and L. Rabinovitch. 1989. A comparative study of enzyme variation in Bacillus cereus and Bacillus thuringiensis. J. Appl. Bacteriol. 67:275-282.
Zodoks, R., W. VAN Leeuwen, H. Barkema, O. Sampimon, H. Verbrugh, Y.H. Schukken, and A. VAN Belkum. 2000. application of pulsed-field gel electrophoresis and binary typing as tools in veterinary clinical microbiology and molecular epidemiologic analysis of bovine and human Staphylococcus aureus isolates. J. Clin. Microbiol. 38:1931-1939.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊