(34.237.52.11) 您好!臺灣時間:2021/05/18 14:12
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:池芳美
研究生(外文):Fang-Mei Chih
論文名稱:利用insitu及invitro法評估飼料原料蛋白質及碳水化合物份化物瘤胃降解之動態變化
論文名稱(外文):Study on the ruminal degradation dynamic of protein and carbohydrate fractions of ingredient through in situ and in vitro methods
指導教授:邱文石邱文石引用關係
指導教授(外文):Peter Wen-Shyg Chiou
學位類別:碩士
校院名稱:國立中興大學
系所名稱:畜產學系
學門:農業科學學門
學類:畜牧學類
論文種類:學術論文
論文出版年:2001
畢業學年度:89
語文別:中文
論文頁數:86
中文關鍵詞:蛋白質及碳水化合物份化物降解速率降解率迴歸方程式
外文關鍵詞:protein and carbohydrate fractionsdegradation ratedegradabilityregression equation
相關次數:
  • 被引用被引用:4
  • 點閱點閱:344
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
本試驗為有效應用NRC淨能與代謝蛋白質系統於台灣地區之乳牛,故必須先建立主要飼料原料(分芻料、精料及加工副產物等18種)蛋白質與碳水化合物相關之消化動力學資料,並採用3頭瘤胃開窗牛隻,利用in situ尼龍袋法進行9個時間點的瘤胃培養,以非線性模式系統計算出瘤胃降解速率及其有效降解率,同時並進行in vitro體外培養求得24及48小時之降解率,藉統計分析以求得此三種方法間之相關迴歸。試驗結果顯示蛋白質份化方面,非蛋白態氮(fraction A)以芻料及加工副產物較精料為高。快速降解蛋白質(fraction B1)以玉米明顯較高。而大部份的飼料原料皆以緩速降解蛋白質(fraction B2)佔CP的比例為最多。慢速降解蛋白質(fraction B3)以百慕達及啤酒粕較高。至於不降解不可利用蛋白質(fraction C)以高梁酒粕及米酒粕明顯較高。在碳水化合物方面,最快速降解碳水化合物(CHO A)以百慕達、盤固草、啤酒粕及米酒粕含量較低,而大豆粕較高。快速降解碳水化合物(CHO B1)以玉米及高梁酒粕顯著較高。緩速降解碳水化合物(CHO B2)以禾本科牧草及啤酒粕較豆科牧草、精料及其他加工副產物為高。至於不降解不可利用碳水化合物(CHO C)以棉籽及米酒粕含量較高。營養分之瘤胃降解速率,乾物質以精料最快,加工副產物次之,芻料最慢。蛋白質則以豆科牧草之苜蓿最快。中洗纖維與酸洗纖維皆以加工副產物明顯較芻料為快。降解率(8%通過速率)方面,乾物質以精料最多,芻料之豆科牧草次之。蛋白質則以豆科牧草有較大值。中洗纖維以高梁酒粕及米酒粕有較高之情形,而酸洗纖維則以狼尾草及高梁酒粕較多。在迴歸方程式方面,豆科牧草與禾本科牧草蛋白質及碳水化合物份化值皆可較準確預估in situ降解速率,其R2分別為0.9917與0.6455 (P<0.05),而加工副產物雖然P值不顯著,但有其趨勢的存在(R2=0.9576, P>0.05)。然豆科牧草及禾本科牧草也可較準確預估in vitro降解率(R2=0.9992 vs R2=0.6595, P<0.05)。

Before the NRC net energy and metabolizable protein system can be effectively applied to local dairy farming in Taiwan, digestive kinetic information regarding the protein and carbohydrate fractions of the major feedstuff used in dairy diets should be established. Three fistulated cows were used in an in situ nylon bag study with nine consecutive ruminal incubation times for each duplicate sample to derive the degradation rate and availability (or degradability) of feedstuff calculated through a nonlinear regression model system. The degradability of feedstuff at 24 and 48hr incubations was derived via in vitro method using a DAISY incubator. Data from the different methods were analyzed through step-wide regression analysis. Results showed that the roughage and by-products contained higher fraction A (soluble non-protein nitrogen) than most of the concentrates. Corn in concentrates contained the highest fraction B1 (soluble protein). Fraction B2 (intermediately degraded protein) contained the greatest percentage of crude protein of the tested feedstuff. Bermuda hay and brewer's grains contained higher fraction B3 (slowly degraded available protein) as compared to the other ingredients. Sorghum distillers' grains and rice grain contained more fraction C (undegraded unavailable protein) than the other feedstuffs. From carbohydrate fractionalization, Bermuda hay and Pangola grass contained the lowest fraction A (fast degradable) among the forages, with brewers' grain and rice distillers' grains having the lowest by-products. Soybean meal contained the largest amount of fraction A among the concentrates. Corn among concentrates and sorghum distillers' grains among by-products contained higher B1 (intermediate degradable) fractions compared to the other ingredients. Where graminaceous herbage in forages and brewers' grain in by-products contained higher fraction B2 (slow degradable) than legumes, concentrates and other by-products. Cottonseed in concentrates and rice distillers' grains in by-products contained higher fraction C (non-degradable non-usable) than the forages. Our data also showed that the dry matter in the concentrates degraded fastest, by-products next, and forage degraded the slowest. Alfalfa showed the fastest protein degradation rate among the forages. The degradation rate of neutral detergent fiber (NDF) and acid detergent fiber (ADF) in by-products was faster than in the forages. The degradability of dry matter (8%/h passage rate) in the rumen in the concentrates was fastest, legume forages was the next. Among the forages, legume protein degraded the greatest. The ruminal NDF availability of sorghum distillers' grains and rice distillers' grains was the greatest. The ruminal ADF availability in Napiergrass and sorghum distillers' grains was the greatest. The in situ degradation rate of legumes and graminaceous herbage could be predicted using protein and carbohydrate fractions with R-squares 0.9917 and 0.6455, respectively although the P value was not significantly different in the by-products (R2=0.9576, P>0.05). The in vitro degradability of legumes and graminaceous herbage could also be predicted from the fractions (R2=0.9992 vs. R2=0.6595, P<0.05).

目錄 頁次
壹、中文摘要.......................01
貳、緒言.........................03
參、文獻檢討.......................04
一、NRC 肉牛及乳牛營養需要量 ..............04
二、Cornell淨碳水化合物及蛋白質系統之分類 ........05
(一)飼糧中蛋白質之分類 ................05
(二)飼糧中碳水化合物之分類 ..............06
三、各種蛋白質降解率之測定方法及其特性(優缺點).... .08
(一) 活體測定 .....................08
(二) 原位測定 .....................09
(三) 實驗室方法 ....................09
四、原位測定法之影響因子.................10
五、原位測定蛋白質降解率的模式..............13
六、in vitro體外培養法應用於瘤胃模擬試驗..........14
(一)體外培養之比較 ..................14
(二)體外培養之注意事項 ................16
(三)影響發酵槽微生物發酵效率之因子 ..........16
七、以in vitro法或份化物預估in situ法之相關迴歸 ......18
肆、材料與方法......................20
(Ⅰ)本省常用乳牛飼料原料蛋白質之份化 .........20
(Ⅱ)本省常用乳牛飼料原料碳水化合物之份化 .......22
(Ⅲ)以in situ尼龍袋法測定飼料原料營養分於瘤胃內之降解速率及降解率 .............24
(Ⅳ)以in vitro體外培養法測定飼料原料營養分之降解率...27
(Ⅴ)蛋白質及碳水化合物份化物與in situ尼龍袋法及in vitro體外培養法之相關 ...........29
伍、結果與討論......................30
一般組成.......................30
蛋白質份化......................34
碳水化合物份化....................39
降解速率.......................42
有效降解率......................51
以in vitro體外培養法測定飼料原料營養分之降解率 ....58
飼料原料蛋白質與碳水化合物份化值對in situ法降解速率之迴歸方程式..................61
飼料原料蛋白質與碳水化合物份化值對in vitro法降解率之迴歸方程式.................70
飼料原料利用DAISY之in vitro法與in situ法降解率之迴歸方程式...................72
陸、結論.........................75
柒、參考文獻.......................76
捌、英文摘要.......................85
表次 頁次
表1、試驗完全混合日糧之組成及營養成分..........25
表2、飼料原料之一般組成.................31
表3、飼料原料乾物質降解率之非線性參數估計值(in situ)....43
表4、飼料原料蛋白質降解率之非線性參數估計值(in situ)....44
表5、飼料原料中洗纖維降解率之非線性參數估計值(in situ)...45
表6、飼料原料酸洗纖維降解率之非線性參數估計值(in situ)...46
表7、飼料原料乾物質之有效降解率(in situ)..........52
表8、飼料原料蛋白質之有效降解率(in situ)..........53
表9、飼料原料中洗纖維之有效降解率(in situ).........54
表10、飼料原料酸洗纖維之有效降解率(in situ) ........55
表11、飼料原料利用DAISY之in vitro法與in situ法降解率之比較 .....................59
表12、豆科牧草蛋白質與碳水化合物份化值對in situ法降解速率之迴歸方程式 ..............62
表13、禾本科牧草蛋白質與碳水化合物份化值對in situ法降解速率之迴歸方程式 ..............63
表14、酒類副產物蛋白質與碳水化合物份化值對in situ法降解速率之迴歸方程式 ..............64
表15、飼料原料蛋白質與碳水化合物份化值對in vitro法降解率之迴歸方程式 ...............71
表16、飼料原料利用DAISY之in vitro法與in situ法降解率之迴歸方程式 ..................73
圖次 頁次
圖1.尼龍袋中蛋白質消失率與瘤胃中培養時間變化的關係....15
圖2.飼料原料蛋白質份化值.................35
圖3.飼料原料碳水化合物份化值...............40

李春芳、陳吉斌、蕭宗法。1999。盤固草與百慕達草對荷蘭泌乳牛飼養價值比較。畜產研究。32(4):353-364。
郭坤生。1993。未降解蛋白質系統應用於本省高產乳牛之研究。國立中興大學,碩士論文。台中市。
陳靜宜。1995。澱粉與蛋白質分解率搭配對人工瘤胃中微生物性能之影響。國立台灣大學,碩士論文。台北市。
張書豪。1998。利用高梁酒粕於泌乳牛飼糧之研究。國立中興大學,碩士論文。台中市。
楊价民。1997。瘤胃生態系統與反芻動物對養分的利用。藝軒圖書出版社。台北市。
AFRC. 1992. Nutritive requirements of ruminant animals:Protein. Nutr. Abstr. Rev. (Ser. B) 62:787-835.
Aldrich, J. M., L. A. Holden, L. D. Muller, and G. A. Varga. 1996. Rumen availabilities of nonstructural carbohydrate and protein estimated from in situ incubation of ingredients versus diets. Anim. Feed Sci. Technol. 63:257-271.
A. O. A. C. 1980. Official Method of Analysis, 13th ed., Association of Official Analytical Chemists. Washington, D. C.
Balde, A. T., J. H. Vandersall, R. A. Erdman, J. B. Reeves,Ⅲ, and B. P. Glenn. 1993. Effect of stage of maturity of alfalfa and orchard grass on in situ dry matter and crude protein degradability and amino composition. Anim. Feed Sci. Technol. 44:29-43.
Ben-Ghedalia, D., E. Yosef, J. Miron, and Y. Est. 1989. The effects of starch- and pectin-rich diets on quantitative aspects of digestion in sheep. Anim. Feed Sci. Technol. 24:289-298.
Bruno-Soares, A. M., J. M. F. Abreu, C. V. M. Guedes, and A. A. Dias-da-Silva. 2000. Chemical composition, DM and NDF degradation kinetics in rumen of seven legume straws. Anim. Feed Sci. Technol. 83:75-80.
Chiang, B. Y., and J. A. Johnson. 1977. Measurement of total and gelatinized starch by glucoamylase and o-toluidine reagent. Cereal. Chem. 54:429-435.
Chiou, P. W. S., S. H. Chang, J. K. Chiang, B. Yu, and C. R. Chen. 1999. Studies on the use of wet sorghum distiller's grains in lactating cows. Asian-Aus. J. Anim. Sci. 12(6):895-900.
Chiou, P. W. S., K. J. Chen, K. S. Kuo, J. C. Hsu, and B. Yu. 1995a. Studies on the application of undegradable protein system to high yielding dairy cattle in Taiwan. Anim. Feed Sci. Technol. 54:93-102.
Chiou, P. W. S., K. J. Chen, K. S. Kuo, J. C. Hsu, and B. Yu. 1995b. Studies on the protein degradabilities of feedstuffs in Taiwan. Anim. Feed Sci. Technol. 54:215-226.
Coblentz, W. K., I.E.O. Abdelgadir, R. C. Cochran, J. O. Fritz, W. H. Fick, K. C. Olson, and J. E. Turner. 1999a. Degradability of forage proteins by in situ and in vitro enzymatic methods. J. Dairy Sci. 82:343-354.
Coblentz, W. K., J. O. Fritz, R. C. Cochran, W. L. Rooney, and K. K. Bolsen. 1997. Protein degradation in response to spontaneous heating in alfalfa hay by in situ and ficin methods. J. Dairy Sci. 80:700-713.
Coblentz, W. K., J. O. Fritz, W. H. Fick, R. C. Cochran, J. E. Shirley, and J. E. Turner. 1999b. In situ disappearance of neutral detergent insoluble nitrogen from alfalfa and eastern gamagrass at three maturities. J. Anim. Sci. 77:2803-2809.
DePeters, E. J., J. G. Fadel, and A. Arosemena. 1997. Digestion kinetics of neutral detergent fiber and chemical composition within some selected by-product feedstudds. Anim. Feed Sci. Technol. 67:127-140.
Dewhurst, R. J., D. Hepper, and A. J. F. 1995. Comparison of in sacco and in vitro techniques for estimating the rate and extent of rumen fermentation of a range of dietary ingredients. Anim. Feed Sci. Technol. 51:211-229.
Elizalde, J. C., N. R. Merchen, and D. B. Faulkner. 1999a. In situ dry matter and crude protein degradation of fresh forages during the spring growth. J. Dairy Sci. 82:1978-1990.
Elizalde, J. C., N. R. Merchen, and D. B. Faulkner. 1999b. Fractionation of fiber and crude protein in fresh forages during the spring growth. J. Anim. Sci. 77:476-484.
England, M. L., G. A. Broderick, R. D. Shaver, and D. K. Combs. 1997. Comparison of in situ and in vitro techniques for measuring ruminal degradation of animal by-product proteins. J. Dairy Sci. 80:2925-2931.
Ewart, J. M. 1974. Continuous in vitro rumen system. Proc. Nutr. Soc. 33:125-133.
Fall-Toure, S., and B. Michalet-Doreau. 1995. Nitrogen partition in cell structures of tropical browse plants compared with temperate forages: influence on their in situ degradation pattern. Anim. Feed Sci. Technol. 51:65-72.
Figroid, W., W. H. Hale, and B. Theurer. 1972. An evaluation of the nylon bag technique for estimating rumen utilization of grains. J. Anim. Sci. 35:113-120.
Givens, D. I., E. Owen, R. F. E. Axford, and H. M. Omed. 2000. Forage Evaluation in Ruminant Nutrition. CABI Publishing, New York, NY.
Han, K. J., K. A. Albrecht, D. R. Mertens, and D. A. Kim. 2000. Comparison of in vitro digestion kinetics of cup-plant and alfalfa. Asian-Aus. J. Anim. Sci. 13(5):641-644.
Hoffman, P. C., N. M. Brehm, L. M. Bauman, J. B. Peters, and D. J. Undersander. 1999. Prediction of laboratory and in situ protein fractions in legume and grass silage using near-infrared reflectance spectroscopy. J. Dairy Sci. 82:764-770.
Hoffman, P. C., S. J. Sievert, R. D. Shaver, D. A. Welch, and D. K. Combs. 1993. In situ dry matter, protein, and fiber degradation of perennial forages. J. Dairy Sci. 76:2632-2643.
Holden, L. A. 1999. Comparison of methods of in vitro dry matter digestibility for ten feeds. J. Dairy Sci. 82:1791-1794.
Hristov, A. N. 1998. Nitrogen fractions and in sacco dry matter and crude protein degradability of fresh and frozen alfalfa. Anim. Feed Sci. Technol. 71:351-355.
Huyler, M. T., and R. L. Kincaid. 1999. The relationship between intestinally available protein and detergent insoluble protein of feedstuffs. Anim. Feed Sci. Technol. 78:101-107.
Krishnamoorthy, U., T. V. Muscato, C. J. Sniffen, and P. J. Van Soest. 1982. Nitrogen fractions in selected feedstuffs. J. Dairy Sci. 65:217-225.
Krishnamoorthy, U., C. J. Sniffen, M. D. Stern, and P. J. Van Soest. 1983. Evaluation of a mathematical model of rumen digestion and an in vitro simulation of rumen proteolysis to estimate the rumen-undegraded nitrogen content of feedstuffs. Br. J. Nutr. 50:555-568.
Licitra, G., T. M. Hernandez, and P. J. Van Soest. 1996. Standardization of procedures for nitrogen fractionation of ruminant feeds. Anim. Feed Sci. Technol. 57:347-358.
Lopez, S., M. D. Carro, J. S. Gonzalez, and F. J. Ovejero. 1998. Comparison of different in vitro and in situ methods to estimate the extent and rate of degradation of hays in the rumen. Anim. Feed Sci. Technol. 73:99-113.
Mabjeesh, S. J., M. Cohen, and A. Arieli. 2000. In vitro methods for measuring the dry matter digestibility of ruminant feedstuffs:Comparison of methods and inoculum source. J. Dairy Sci. 83:2289-2294.
MacGregor, C. A., M. R. Stokes, W. H. Hoover, H. A. Leonard, L. L. Junkins, C. J. Sniffen Jr., and R. W. Mailman. 1983. Effect of dietary concentration of total nonstructural carbohydrates on energy and nitrogen metabolism and milk production of dairy cows. J. Dairy Sci. 66:39-50.
Mandebvu, P., J. W. West, R. N. Gates, and G. M. Hill. 1998. Effect of hay maturity, forage source, or neutral detergent fiber content on digestion of diets containing Tifton 85 bermudagrass and corn silage. Anim. Feed Sci. Technol. 73:281-290.
Masoero, F., M. Moschini, F. Rossi, and G. Piva. 1999. Estimate of the rumen organic matter degradation by the CNCPS carbohydrate and proteins fractions. Proceeding of 5th International Symposium and Nutrition Herbivores, San Antonio, Texas.
Mass, R. A., G. P. Lardy, R. J. Grant, and T. J. Klopfenstein. 1999. In situ neutral detergent insoluble nitrogen as a method for measuring forage protein degradability. J. Anim. Sci. 77:1565-1571.
Michalet-Doreau, B., and M. Y. Ould-Bah. 1992. In vitro and in sacco methods for the estimation of dietary nitrogen degradability in the rumen:a review. Anim. Feed Sci. Technol. 40:57-86.
Mitchell, R. B., D. D. Redfearn, L. E. Moser, R. J. Grant, K. J. Moore, and B. H. Kirch. 1997. Relationships between in situ protein degradability and grass developmental morphology. J. Dairy Sci. 80:1143-1149.
Nakamura, T., T. J. Klopfenstein, and R. A. Britton. 1994. Evaluation of acid detergent insoluble nitrogen as an indicator of protein quality in nonforage proteins. J. Anim. Sci. 72:1043-1048.
National Research Council. 1996. Nutrient Requirements of Beef Cattle. 7th rev. ed. Washington, DC. Natl. Acad. Sci.
National Research Council. 2001. Nutrient Requirements of Dairy Cattle. 7th rev. ed. Washington, DC. Natl. Acad. Sci.
Nocek, J. E. 1985. Evaluation of specific variables affecting in situ estimates of ruminal dry matter and protein digestion. J. Anim. Sci. 60:1347-1358.
Nocek, J. E., and R. A. Kohn. 1988. In situ particle size reduction of alfalfa and timothy hay as influenced by form and particle size. J. Dairy Sci. 71:932-945.
Nugent, J. H. A., W. T. Jones, D. J. Jordan, and J. L. Mangan. 1983. Rates of proteolysis in the rumen of the soluble proteins casein, Fraction Ⅰ(18S) leaf protein, bovine serum albumin, and bovine submaxillary mucoprotein. Br. J. Nutr. 50:357-368.
Orskov, E. R., and I. McDonald. 1979. The estimation of protein degradability in the rumen from incubation measurements weighted according to rate passage. J. Agric. Sci. Camb. 92:499-503.
Roe, M. B., L. E. Chase, and C. J. Sniffen. 1991. Comparison of in vitro techniques to the in situ technique for estimation of ruminal degradation of protein. J. Dairy Sci. 74:1632-1640.
Rogers, J. A., H. R. Conrad, B. A. Dehority, and J. A. Grubb. 1986. Microbial numbers, rumen fermentation, and nitrogen utilization of steers fed wet or dried brewer's grains. J. Dairy Sci. 69:745-753.
Russell, J. B., and D. B. Wilson. 1996. Why are ruminal cellulolytic bacteria unable to digest cellulose at low pH? J. Dairy Sci. 79:1503-1509.
SAS Institute. 1985. SAS User's Guide, Version 5 ed. SAS Institute, Inc., Cary, NC.
Shannak, S., K. -H. Sudekum, and A. Susenbeth. 2000. Estimating ruminal crude protein degradation with in situ and chemical fractionation procedures. Anim. Feed Sci. Technol. 85:195-214.
Smith, L. W., H. K. Goering, and Gordon. 1972. Relationships of forage compositions with with rates of cell wall digestion and indigestibility of cell walls. J. Dairy Sci. 55:1140-1147.
Sniffen, C. J., J. D. O'Connor, P. J. Van Soest, D. G. Fox, and J. B. Russell. 1992. A net carbohydrate and protein system for evaluating cattle diets: Ⅱ. carbohydrate and protein availability. J. Anim. Sci. 70:3562-3577.
Stern, M. D., M. E. Ortega, and L. D. Satter. 1983. Retention time in rumen and degradation of protein supplements fed to lactating dairy cattle. J. Dairy Sci. 66:1264-1271.
Tilly, J. M., and R. A. Terry. 1963. A two-stage technique for the in vitro digestion of forage crops. J. Br. Grassl. Soc. 18:104-111.
Van Hellen, R. W., and W. C. Ellis. 1977. Sample container porosities for rumen in situ studies. J. Anim. Sci. 44:141-146.
Van Soest, P. J. 1982. Nutritional Ecology of the Ruminant. 1nd ed. Cornell University Press, Ithaca, NY.
Van Soest, P. J. 1994. Nutritional Ecology of the Ruminant. 2nd ed. Cornell University Press, Ithaca, NY.
Van Soest, P. J., J. B. Robertson, and B. A. Lewis. 1991. Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. J. Dairy Sci. 74:3583-3597.
Van Soest, P. J., C. J. Sniffen, D. R. Fox, P. H. Robinson, and U. C. Krishnamoorth. 1981. A net protein system for cattle: The rumen submodel for nitrogen. In:F. N. Owens (ED.). Protein Requirements for Cattle: Proceedings of an International Symposium. MP-109. pp. 265. Div. Of Agric., Oklahoma state Univ., Stillwater.
Vanzant, E. S., R. C. Cochran, and E. C. Titgemeyer. 1998. Standardization of in situ techniques for ruminant feedstuff evaluation. J. Anim. Sci. 76:2717-2729.
Varga, G. A., and W. H. Hoover. 1983. Rate and extent of neutral detergent fiber degradation of feedstuffs in situ. J. Dairy Sci. 66:2109-2115.
Warner, A. C. I. 1956. Criteria for establishing the validity of in vitro studies with rumen microorganisms in so-called artificial rumen systems. J. Gen. Microbiol. 14:733-748.
Weakley, D. C., M. D. Stern, and L. D. Satter. 1983. Factors affecting disappearance of feedstuffs from bags suspended in the rumen. J. Anim. Sci. 56:493-507.
Weimer, P. J., G. C. Waghorn, C. L. Odt, and D. R. Mertens. 1999. Effect of diet on populations of three species of ruminal cellulolytic bacteria in lactating dairy cows. J. Dairy Sci. 82:122-134.
Weiss, W. P., D. O. Erickson, G. M. Erickson, and G. R. Fisher. 1989. Barley distillers grains as a protein supplement for dairy cows. J. Dairy Sci. 72:980-987.
Williams A. G., and G. S. Coleman. 1988. The rumen protozoa. In:P. N. Hobson (Ed.) The rumen Microbial Ecosystem. pp 77-128. Elsevier Science Publishing, New York.
Yu, P., A. R. Egan, and B. J. Leury. 2000. Predicting in sacco rumen degradation kinetics of raw and dry roasted faba beans (vicia faba) and lupin seeds (lupinus albus) by laboratory techniques. Asian-Aus. J. Anim. Sci. 13(10):1377-1387.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top