(3.92.96.236) 您好!臺灣時間:2021/05/09 01:17
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:方專任
研究生(外文):Chuan-jen Fang
論文名稱:紙漿懸浮液在重力過濾下之脫水特性
論文名稱(外文):Drainage Characteristics of Pulp Suspensions Under Gravity Filtration in SDJ
指導教授:郭蘭生郭蘭生引用關係張有義張有義引用關係
指導教授(外文):Lan-sheng KuoYou-im Chang
學位類別:碩士
校院名稱:國立中興大學
系所名稱:森林學系
學門:農業科學學門
學類:林業學類
論文種類:學術論文
論文出版年:2001
畢業學年度:89
語文別:中文
論文頁數:109
中文關鍵詞:紙漿懸浮液壓縮性纖細物濾網阻抗平均過濾阻抗比脫水靜力脫水瓶Kozeny方程式
外文關鍵詞:pulp suspensioncompressibilityfinewire resistqnceaverage specific filtration resistancedrainagestatic drainage jarKozeny equation
相關次數:
  • 被引用被引用:0
  • 點閱點閱:128
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
紙漿在靜力脫水瓶中進行重力脫水時,漿料中之細纖物會滲入濾網及纖維層之孔隙中造成阻塞,致使濾網阻抗及纖維層壓降變大,不利過濾。可能影響脫水之變數計有:纖維層之壓縮性、漿料之濃度、纖維之比表面積、纖維長度、細纖物含量及絮凝作用等。本研究即在探討纖維層成形時,這些變數對過濾阻抗之影響,並利用Kozeny方程式來說明流體通過多孔隙介質之脫水機制,以及使用電荷分析儀來探討電荷與過濾阻抗及纖細物保留率間的關連性。由研究結果顯示,在濾網上纖維層的壓縮性大小依序為CTMP>打漿NBKP>打漿LBKP>未打漿LBKP>未打漿NBKP。成形纖維層的摩擦壓力降隨紙漿濃度的增加而呈漸增的趨勢;但對CTMP、打漿NBKP及LBKP而言,在脫水後期,纖維層的摩擦壓力降會有下降之趨勢。纖維層的壓縮性愈大對濾網所造成的阻抗亦愈大。 隨紙漿濃度(0.03~0.3%)之增加而增加;但對CTMP、打漿NBKP及LBKP而言,其紙漿濃度愈高(>0.1%), 在脫水之後期會因纖細物之阻塞而呈現小幅增加之趨勢。平均過濾阻抗比則隨紙漿濃度之增加而下降,且其隨wc增加的趨勢亦因紙漿濃度之增加而緩和。
隨細纖物含量的增加而增加,亦隨纖維長度的減少而有增加的趨勢。過濾阻抗比對CTMP而言,則是因細纖物含量的增加,呈漸減的趨勢;而對打漿NBKP及LBKP而言,在較高濃度下(>0.1%),會因纖維粒子之沉降作用而造成 值之下降。最後,適當的保留助劑添加量(陽性聚丙烯醯胺)可有效的改善 與 值與保留率。需注意保留助劑添加量過量時,會使電性產生反轉,使系統過度陽性化,則漿料懸浮液中的纖維將無絮凝作用發生,因此濾網阻抗與平均過濾阻抗比會有再度上升之勢。

The adverse effect of fines on the drainage of paper in a static drainage jar test was related to more fines trapped within the void of mat, which led to the increase in wire resistance and pressure drop. The furnish variables affecting the drainage are: compressibility of fiber mat, stock consistency, specific surface area, fiber length, fines content and flocculation etc. The main purpose of this study was to investigate the effect of these variables on the wire resistance during sheet formation under gravity drainage. We also tried to understand the drainage behavior of stock flow in the fiber mat by the use of Kozeny equation. Then, we used charge analyzer to study the charge of stock versus filtration resistance and retention of fines on wire (100 mesh). Experimental results of pulp drainage showed that the sequence of compressibility of formed fiber mat on wire was CTMP>beaten NBKP>beaten LBKP>unbeaten LBKP>unbeaten NBKP. The frictional pressure drop of fiber mat increased with the increasing pulp consistency (0.03%~0.3%) during sheet forming. However, there was a reverse tendency (decreasing) for the of CTMP, beaten NBKP and LBKP at the end of drainage. Higher compressibility of fiber mat causesd an increased wire resistance. Additionally, is proportional to the pulp consistency. Nevertheless, at the end of the drainage the higher consistency (>0.1%) of CTMP, beaten NBKP and LBKP showed less increase in due to the wire’s clogging with fines. Average filtration resistance of fiber mat decreased with increasing consistency. The average specific filtration resistance vs. wc curve tilted downward a little with increasing consistency due to the large flocs were formed. increased with increasing fines content and decreasing fiber length. At higher consistency of beaten NBKP and LBKP, the sedimentation of fiber resulted in drop. The and decreased significantly by the addition of retention aid (cationic polyacrylamide) in stock. However, caution should be taken that over dosage of retention aid reverses the charge of stock making the system becoming more cationic that impair the flocs to be formed. And then and will be increased again.

第一章 緒論1
1.1 脫水1
1.2 保留2
第二章 文獻回顧與研究動機3
2.1 文獻回顧3
2.2 研究動機7
第三章 基本理論8
3.1 濾餅過濾理論8
3.1.1 Darcy定律8
3.1.2 Ruth-Sperry方程式9
3.1.3 Kozeny方程式9
3.1.4 固體壓縮壓力12
3.2 傳統過濾方程式14
3.2.1 質量平衡14
3.2.2 傳統過濾方程式14
第四章 實驗設備與步驟18
4.1 重力脫水實驗18
4.1.1 實驗材料18
4.1.2 實驗裝置18
4.1.3 實驗步驟22
4.1.4 其他儀器23
4.2 電荷分析實驗24
4.2.1 實驗材料26
4.2.2 實驗裝置27
4.1.3 實驗步驟27
第五章 數據之分析28
5.1 重力脫水實驗數據之分析28
5.1.1 原始數據之轉換28
5.1.2 及 之計算29
第六章 實驗結果與討論40
6.1 打漿對漿料脫水時間之影響41
6.2 纖維層壓縮性的分析49
6.3漿料懸浮液濃度、纖維長度及細纖物含量對阻抗之影響58
6.3.1 漿料懸浮液濃度對阻抗之影響58
6.3.2 纖維長度大小及細纖物含量的影響70
6.4 添加保留助劑對過濾阻抗的影響77
6.4.1 不同漿料懸浮液的電荷77
6.4.2 電荷對過濾阻抗的影響79
第七章 結論97
符號說明100
參考文獻102
附 錄107
A. 粒徑分佈107
B. 壓力校正曲線108
C. 壓力轉換程式109

1.王信斌,“過濾中濾材與濾餅阻塞現象之研究”,碩士論文,國立臺灣大學,臺北,(1991)。
2.吳俊堯,“過濾中濾材阻塞現象之研究”,碩士論文,國立臺灣大學,臺北,(1990)。
3.洪淑美,“可變形粒子過濾之研究”,碩士論文,國立臺灣大學,臺北,(1998)。
4.陳信銘,化工流體力學,九功出版社(1986)。
5.彭思穎,“單一粒徑之重力過濾”,碩士論文,國立臺灣大學,臺北,(1993)。
6.黃國楨,“濾餅成長機構之微觀解析”,博士論文,國立臺灣大學,臺北,(1992)。
7.黃雲鵬,“濾餅特性值之量測及其應用”,博士論文,國立臺灣大學,臺北,(1998)。
8.蘇聖恩,“膠羽濾餅過濾特性之探討”,碩士論文,私立中原大學,桃園,(1993)。
9.Campbell, W, B., “A physics of water removal”, Pulp Paper Mag. Can., Convention issue, 103-109铪(1947).
10.Burkhard, G., & Wrist, P. E., “Investigation of high speed paper machine drainage phenomena”, Pulp Paper Mag. Can., 59(4):100-117(1956).
11.Robertson, A.A., & Mason, S.G., “Specific surface of cellulose fibers by the liquid permeability method”, Pulp Paper Mag. Can., 52(12):103-110(1949).
12.Ingmanson, W. L., “An investigation of the mechanism of water removal from pulp slurries”, Tappi, 35(10): 439-447(1952).
13.Ingmanson, W. L., “Filtration resistance of compressible materials”, Chemical Engineering Progress, 49(11): 577-584 (1953).
14.Ingmanson, W. L., & Whitney, R. P., “Some aspects of permeation, filtration, and fluidization”, Tappi, 38(3): 157-166(1955).
15.Ingmanson, W. L., & Whitney, R. P., “The filtration resistance of pulp slurries”, Tappi, 37(11): 523-524(1954).
16.Grace, H. P., “Resistance and compressibility of filter cakes”, Chem. Eng. Prog., 49(7): 367-377(1953).
17.Hutto, F. B., “Distribution of porosity in filter cakes”, Chem. Eng. Progr., 53(7): 328-332 (1957).
18.Ingmanson, W. L., & Andrews, B. D., “The effect of beating on filtration resistance and its components of specific surface and specific volume”, Tappi, 42(1): 29-35(1959).
19.Ingmanson, W. L., Andrews, B. D., & Johnson, R.C., “ Internal pressure distribution compressible mats under fluid stress”, Tappi, 42(10): 840-849(1959).
20.Tiller, F. M., & H. R. Copper., “The role of porosity in filtration IV. Constant pressure filtration”, AIChE J., 6: 595(1960).
21.Meyer, H. “A filtration theory for compressible fibrous beds formed from dilute suspensions”, Tappi, 45(4): 296-310(1962).
22.Ingmanson, W. L., “Filtration of high-consistency fiber suspensions”, Tappi, 47(12): 742-750(1964).
23.Emmons, H. W., “The continuum properties of fiber suspensions”, Tappi, 48(12): 679-687(1965).
24.Philip, J. R., “Flow in porous media”, Ann Rev. Fluid Mech., 2: 177-204(1970).
25.Tiller, F. M., & Yeh, C. S. “The role of porosity in filtration. Part XI: Filtration followed by expression”, AIChE J., 33(8): 1241-1256(1987).
26.Yan, J. F., & F. El-Hosseiny, “Analysis of Canadian Standard Freeness part I: Theoretical consideration”, Tappi, 61(8):89(1978).
27.El-Hosseiny, F., & J. F. Yan, “Analysis of Canadian Standard Freeness part I: Theoretical consideration”, Pulp Paper Mag. Can., 81(6): T113-T116(1980).
28.Swodzinski, P. C. & M. R. Doshi, “Mathematical models of Canadian Standard Freeness (CSF) and Schopper-Riegler Freeness (SR)”, Tappi Proceedings of International Conference on Process & Material & Quality Evaluation, 253-268(1986).
29.Pires, E. C., & Springer, A. M., & Kumar, V., “A new technique for specific filtration resistance measurement”, Tappi, 72(7): 149-154(1989).
30.Mantar, E., CO, A., & Genco, J. M., “Drainage characteristics of pulp slurries under dynamic conditions”, JPPS, 21(2): J44-J50(1995).
31.Norden, H. V., & Kauppinen, P., “Cake filtration with application to dewatering of pulp”, Nordic Pulp Pap. Res. J., 4: 208-213(1994).
32.Kumar, P., Wei, H. L., Ramarao, B. V. & Doshi, M., “A model for freeness measurement of papermaking suspensions”, Chem. Eng. Comm., 1952:287-306(1996).
33.Ramarao, B. V., Kumar, P., “A model for the gravity drainage of papermaking suspensions”, Nordic Pulp Pap. Res. J., 2:86-94(1996).
34.Kumar, P., “Drainage and fine particle retention in forming fibrous mats”, Ph.D Thesis., Univ. New York(1995).
35.Walstrőm, B., & O’Blenes, G., “The drainage of pulps at paper-making rates and consistencies using a new drainage tester”, Pulp Paper Mag. Can., 63(8): T405(1962).
36.Andrews, B. D., & White, L.R., “A constant-rate rapid drainage tester”, Tappi, 59(6): 1171-1175(1969).
37.Britt, K. W., & J. Unbehend., “Dynamic drainage of paper stock”, Tappi, 65(11): 64-66(1982).
38.Wildfong, V. J., Genco, J. M., Shands, J. A., & Bousfield, D. W., “Filtration mechanics of sheet forming. Part I: Apparatus for determination of constant-pressure filtration resistance”, JPPS, 26(7): 250-254(2000).
39.Wildfong, V. J., Genco, J. M., Shands, J. A., & Bousfield, D. W., “Filtration mechanics of sheet forming. Part II: Influence of fine material and compression”, JPPS, 26(8): 280-283(2000).
40.Stamatakis, K. P., “Analysis of cake formation and growth in liquid-solid separations ”, Ph.D Thesis., Univ. Syracuse(1989).
41.Scott, A. W., “Compressible cake filtration modeling and analysis”, Ph.D Thesis., Univ. Cornell(1989).
42.Parker, J. D., “The sheet forming process”, Publ. STAP No 9. TAPPI PRESS, Atlanta(1972).
43.Shirato, M., M. Sambuichi, H. Kato, & T. Aragaki, “Internal flow mechanism in filter cakes”, AIChE J., 15: 405-409(1969).
44.Cowan, W. F., “Wet pulp characterization by means of specific surface, specific volume and compressibility”, Pulp Paper Mag. Can., 71(9): 63-66(1970).
45.Wilder, H. D., “The compression creep properties of wet pulp mats”, Tappi, 43(8): 715-719(1960).
46.Strazdins, E., “Factors affecting the electrokinetic properties of cellulose fibers”, Tappi, 55(12): 1691(1972).
47.Tappi, 56(12): 144~147(1973)
48.Pears, M. J., & J. Barnett, “Chemical treatments for thickening and filtration”, Filtration and Separation, 17(5): 460-470(1980).
49.Rushton, A., & P.V.R. Griffiths, “Filtration principles and practices”, Part I, Chapter 3, Marcel Dekker Inc(1977).
50.Wei, H., Kumar, P., Ramarao, B. V., & Tien, C., “Drainage and fine particle retention in a forming incompressible fibrous mat”, JPPS, 22(11): (1996).
51.Chase, G.G., “Continuum analysis of constant rate filtration”, Ph.D Thesis., Univ. Akron(1989).

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔