(3.235.191.87) 您好!臺灣時間:2021/05/13 15:16
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:簡志達
論文名稱:結構接觸問題新解
論文名稱(外文):A new algorithm for structural contact problems
指導教授:鄔詩賢
學位類別:碩士
校院名稱:國立中興大學
系所名稱:機械工程學系
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2001
畢業學年度:89
語文別:中文
論文頁數:90
中文關鍵詞:接觸自然振動頻率振動模態
外文關鍵詞:contactnatural frequencymode shape
相關次數:
  • 被引用被引用:0
  • 點閱點閱:77
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究主要係針對結構行為中的接觸問題進行詳盡的討論。對結構之接觸問題,本文提供了一個新的演算法則,並推導出相關的靜態與動態特性公式。
本方法主要是將接觸區域的邊界協調條件與平衡方程式直接導入有限元素公式中,並舉二維椼架結構、二維樑結構、三維椼架結構、空間板結構與實體元素結構等例子加以驗證。研究結果顯示本方法具有相當意義。對預知兩結構或多結構在接觸區域間的磨耗或結構因高速旋轉而產生的瞬間撞擊與破壞…等方面之研究將可提供重要的參考價值。

ABSTRACT
In this research, contact problems in structural behaviors are studied. A new algorithm is introduced and the corresponding formulations in both the static and the natural dynamic responses are derived.
The idea of this work is initiated by directly substituting the conditions of compatibility and equilibrium into the finite element formula on the contact regions. Typical structures, such as two-dimensional truss, two-dimension beam, three-dimension frame, spatial plate and solid elements are demonstrated. Results show that the algorithm proposed here is significant and value for further studies such as the prediction of wears at contact regions on two or more structures, sudden impact of structures caused by high-speed rotation or crack-induced parts, etc.

目 錄
誌 謝.................................................Ⅰ
中文摘要.................................................Ⅱ
英文摘要.................................................Ⅲ
目 錄.................................................Ⅳ
圖 目 錄.................................................Ⅵ
表目錄...................................................Ⅹ
符號說明.................................................XI
第一章 緒論..............................................1
1.1前言.............................................1
1.2文獻回顧.........................................2
1.3研究方法與目的...................................4
第二章 靜態接觸問題公式推導...............................6
2.1前言.............................................6
2.2兩物體靜態接觸公式推導...........................7
2.3多物體靜態接觸公式推導..........................10
2.4靜態接觸公式討論................................15
第三章 動態接觸問題公式推導..............................16
3.1前言............................................16
3.2兩物體動態接觸公式推導..........................17
3.3多物體動態接觸公式推導..........................22
3.4動態接觸公式討論................................30
第四章 實例與討論........................................31
4.1前言............................................31
4.2二維衍架結構....................................32
4.3平面樑結構......................................36
4.4空間樑結構......................................40
4.5空間板元素結構..................................43
4.6殼元素之葉片結構................................46
4.7實體元素之葉片結構..............................59
第五章 結論與展望........................................71
5.1結論............................................71
5.2展望............................................72
附錄一:有限元素特性矩陣.................................73
附錄二:高斯積分法.......................................83
參考文獻.................................................85
作者簡介.................................................90

參 考 文 獻
[1] 劉偉源譯,〝結構的有限元素法〞,東華書局,1992。
[2] G. Beer, ‘An Isoparametric Joint/Interface Element for Finite Element Analysis’, Int. J. Numer. Methods. Eng, Vol. 21, pp. 585-600, 1985.
[3] J.S.S. Wu, J.H. Chen, C.B. Shih, M.D. Poon, 1998.12 ‘The Study of Contact and Wear Problems in the THR Finite Element Models’, Annual Symposium, The Biomedical Engineering Society, Taipei, Taiwan, ROC.
[4] K.L. Johnson, ‘One hundred years of Hertz contact’, Proc.I. Mech. 196,363-378(1982).
[5] H. Hertz, ‘Uber die beruhrung fester elasticher korper’ (On the contact of elastic solids), J. reine angewandie matjematik,92,156-171(1882).
[6] D.J. White and L.R. Enderby, ‘Finite element stress analysis of a non-linear problem: A connecting rod eye loaded by means of a pin’. J. Strain Anal.,5,187-195(1970).
[7] J.T. Stadter and R.O. Weiss. ‘Analysis of contact through finite element gaps’, Comp.Struct.,10,867-873(1979).
[8] M. Mazurkiewicz and W. Ostachowicz, ‘Theory of the finite element method for elastic contact problems of solid bodies’, Comp. Struc.,17,51-59(1983).
[9] E. Zolti, ‘A finite element procedure for time dependent contact analysis’, Comp. Struc.,17,555-561(1984).
[10] W. Ostachowicz, ‘Mixed finite element method for contact problem’, Comp. Struc.,18,937-945(1984).
[11] C.J. Wong, ‘Applications of non-linear finite element method to contact problem and paper handling problems’, Comp. Struc.,19,315-320(1984).
[12] T. Endo, J. T. Oden, E. B. Becker and T. Miller, ’A numerical analysis of contact and limit point behaviour in a class of problem of finite elastic deformation’, Comp. Struc.,18,899-910(1984).
[13] J. C. Simo, P. Wriffers, K. H. Schweizerhof and R. L.
Taylor,‘Finite element deformation post-buckling
analysisinvolving inelasticity and contact constraints’
, Int. j. number. Method eng.,23,779-800(1986).
[14] J. Padovan, R. Moscarello, J. Stafford and F. Tabaddor,
‘Pantographing self adaptive gap elements’, Comp. Struc.20, 745-758(1985).
[15] R.C.Batra ,’Steady state penetration of viscoplastic targets’, Int J
Eng Sci. 1987; 25-9: 1131-1141.
[16] N.Kikuchi, J.T.Oden,’Contact problems in elasticity. SIAM
Publication Philadelphia’, 1988.
[17] P.Wriggers, V.Van, E.Stein,’ Finite element formulation impact-
contact problems with friction of large deformation’, Comput and Struct. 1990; 37: 319-331.
[18] G. Yagawa and H. Hirayana, ‘A finite element method for contact problem related to fracture mechanics’, Int. j. numer. Method eng., 20,2175-2195(1984).
[19] Y. Kanto and G. Yagawa, ‘A dynamic contact buckling analysis by the penalty finite element method’, Int. j. numer. Method eng.,29,755-774(1990).
[20] T. J. R. Hughes, R. L. Taylor, J. L. Sackman, ‘A finite element method for a class of contact-impact problem’, Comp. Method. Appl. Mech. Eng.,8,249-276(1976).
[21] N. Okamoto and M. Nakzawa, ‘Finite element incremental contact analysis with various frictional cooditions’, Int. j. numer. Method.eng.,14,337-357(1979).
[22] F. M. Guerra and R. V. Browning, ‘Comparison of two slideline methods using ADINA’, Comp. Struc.,17,819-834(1983).
[23] N. Kikuchi and J. T. Oden, ‘Contact problems in Elasticity: A study of variational inequalities and finite element method’,SIAM, Philadelphia,1988.
[24] G. L. Goudreau and J. O. Hallquist, ‘Recent developments in large-scale finite element Lagrangian hydrocode technology’,Comput.Mech.Appl.Mech.Eneng33,725-757(1982).
[25] J. O. Hallquist, G. L. Goudreau amd D.J.Benson,Sliding ‘interfaces with contact-impact in large-scale Lagrangian computations’, Compt. Mech. Engng 51,107-137(1985).
[26] B. Nour-Omid and P. Wriggers, ‘A two-level iteration method for solution of contact problems’, Comput. Mech. Appl. Mech. Engng54.131-144(1986).
[27] N. Asano, ‘A virtual work principle using penalty function method for impact contact problems of two bodies’, Bull.JSME29,731-736(1986).
[28] N. Asano ,’A penalty function type of virtual work principle for
Impact contact problems of two bodies’, Bull. JSME 29,731-736(1986)
[29] Y. Kanto and G. Yagawa, ‘A dynamic contact buckling
analysis by the penalty finite element methid’, Int. J Numer .Meth Engng29,755-774(1990).
[30] R, F, Kulak, ‘Adaptive contact elements for three dimension
explicit transient analysis’, Comput.Meth.Appl.Mech.Engng72
,123-151(1989)
[31] A. B. Pifko and R. Winter, ‘Theory and application offiniteelement analysis to structure crash simulation’, Comput Struct. 13,277-285(1981).
[32] T. Belyschko and M O. Neal, ‘Contact-impact by the pinball algorithm with penalty and Lagrangian methods’, Int. J. Numer. Mech.Engng 13,547-572(1991).
[33] T. J. R. Hunges, R, L, Taylor, J. L. Sackman, ‘A Curnier and W. Kanoknukulchai, A finite element method for a class of contact-impact problem’, Comput. Meth. Appl. Mech.Engng 8,249-276(1976).
[34] N. Asano, ‘An approximate hybrid type of virtual work principle for two elastoimpact contact bodies’, Bull, JME 26,1849-4856(1983).
[35] N. Asano, ‘An A hybrid type of virtual work principle for impact contact problems of two bodies’, Bull, JME26,1849-4856(1983),
[36] K. J. Bathe and A. B. Chaudhary, ‘A solution method for static and dynamic analysis of three-dimensional contact problems with friction’, Compt.Struct. 24,855-873(1986)
[37] G. L. Goudreau and J. O. Hallwuist, ’Recent developments in large-scale finite element Lagrangian hydrocode
technology’,Comput.Meth.Appl.Mech.Engng33,725-757(1982)
[38] J. O. Hallquist, G. L. Goudreau amd D.J.Benson,’Sliding interfaces with contact-impact in large-scale Lagrangian computations’, Compt. Mech. Engng 51,107-137(1985).
[39] B. Nour-Omid and P. Wriggers, ‘A two-level iteration method for solution of contact problems’, Comput. Mech. Appl. Mech. Engng54.131-144(1986).
[40] Simo, J. C. and T. A. Laursen, ‘An Augmented Lagrrangian Treatment of Contact Problems Involving Friction’,Comput Vol.42,No.1.1992.pp.97~116.
[41] B.M. Kwak and S.S. Lee. ‘A complementarity problem formulation for two-dimension frictional contact provbems’,Comput. Struct. 28.pp.469-480.1988.
[42] A Gakwata, D. lambert and A. Cardou. ‘A boundary element and mathematical programming approach for frictional contact problems’, Comput .Struct. 42, pp.342-353,1992.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊
 
系統版面圖檔 系統版面圖檔