(3.235.245.219) 您好!臺灣時間:2021/05/10 02:00
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

: 
twitterline
研究生:劉大中
研究生(外文):Liu La Chung
論文名稱:化學機械拋光磨耗機制之研究
論文名稱(外文):A STUDY OF WEAR MECHANISMS FOR CHEMICAL MECHANICAL POLISHING
指導教授:蔡志成蔡志成引用關係
學位類別:碩士
校院名稱:國立中興大學
系所名稱:機械工程學系
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2001
畢業學年度:89
語文別:中文
論文頁數:95
中文關鍵詞:化學機械拋光磨耗
外文關鍵詞:CMPwear
相關次數:
  • 被引用被引用:12
  • 點閱點閱:757
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:138
  • 收藏至我的研究室書目清單書目收藏:0
在積體電路(IC)工業中,由於元件設計日趨複雜及深次微米結構的需求,因此晶圓表面的平坦度必須提高,以配合微影製程的需求。化學機械拋光(CMP)較其他拋光方法更能達到全面性平坦化的效果而廣為IC製程所採用,然而CMP製程的機制還未能充分掌握,本文以機械應力的觀點,探討化學機械拋光過程的液動磨耗機制及磨粒磨耗機制,再經由銅被覆層的CMP實驗結果探討拋光過程中,機械作用所造成的影響及其對於表面材料移除的關係。
研究主要發現包括(1)在液動磨耗機制中,若不考慮化學反應的作用,是無法達到材料移除效果。(2)由模擬分析得知壓力對移除率的影響並非完全為線性關係。(3)從實驗數據的整體變化趨勢來看,轉速改變對於移除率的影響較壓力變化明顯,故剪應力對於材料移除的效果較正向應力為強烈。(4)軟質拋光墊的移除率實驗值與理論分析的趨勢相近,故磨粒磨耗理論較適用於軟質拋光墊之拋光過程。(5)在不含磨粒的漿料實驗下,因為壓力的增加而導致薄膜厚度的下降,在漿料供給不足的情形下,減少了化學反應的機會,故在純機械力的作用下,材料移除的效果較不明顯。(6)背壓的大小以及拋光墊性質的軟硬程度,會影響CMP的不均均性。(7)實驗所量測的表面粗糙度值隨壓力增加而有變差的趨勢,而此變化的趨勢與理論模擬之刮痕深度相同。
The increasing complexity of devices and the emergence of deep submicrometer structures in integrated circuit (IC) industry require minimum surface topographies of wafer for lithography process. Chemical mechanical polishing (CMP) has been used in the planarization of wafer surfaces as, compared to other planarization processes, it can achieve global planarization. However, the process mechanism of CMP is not well understood yet. This thesis, from the mechanical viewpoint, investigates the fluid-based and abrasive-based wear mechanisms. Experiments are designed and conducted to verify the mechanisms and to understand the relationship between material removal and mechanical parameters.
Achievement of this study includes the following items. (1) Material on wafer surface cannot be removed by hydrodynamic effects without chemical reaction. (2) The relationship between the material removal rate (RR) and the applied polishing pressure is not linear. (3) Experimental data shows that polishing velocity has higher effect than polishing pressure on RR. That is, RR depends stronger on the shear stress than on the normal stress. (4) RR based on soft pad matched better with theoretical value. It is observed that abrasive-based wear mechanism is suitable for CMP with soft pad. (5) It is also observed from abrasive-free polishing that RR is not obvious when polishing pressure increases. This is caused by the decrease of slurry between the wafer and the pad due to the increasing pressure and thus reduces the chemical reaction. (6) Non-uniformity (NU) of wafer is highly affected by the back pressure and stiffness of pad. (7) Surface roughness increases as polishing pressure increases. The trend, however, is similar to the theoretical value of scratch.
中文摘要Ⅰ
英文摘要Ⅱ
致謝Ⅲ
目錄Ⅳ
表目錄Ⅵ
圖目錄Ⅶ
第一章 緒論1
1.1 前言1
1.2 研究動機與目的1
1.3 文獻回顧2
1.4 本文大綱5
第二章 液動磨耗機制6
2.1 液動磨耗理論6
2.2 雷諾方程式之建立9
2.3 液動磨耗分析12
第三章 磨粒磨耗機制21
3.1 拋光墊與晶圓之接觸分析21
3.2 磨粒磨耗分析25
第四章 實驗設定34
4.1 實驗規劃34
4.2 實驗流程37
4.3 實驗設備38
第五章 實驗結果與分析40
5.1 含磨粒漿料之銅CMP實驗數據結果與分析41
5.2 不含磨粒漿料之銅CMP實驗數據結果與分析55
5.3 理論分析與銅之CMP實驗數據結果比較67
5.4 晶圓刮痕量測結果與分析71
第六章 結論與未來展望84
6.1 結論84
6.2 未來展望85
參考文獻87
附錄A 理論模擬與氧化層CMP之比較91
作者簡介95
1. M. Bhushan, R. Rouse, and J. E. Lukens, 1995, “Chemical-Mechanical Polishing in Semidirect Contact Mode,” Journal of Electrochemical Society, Vol. 142, pp. 3845-3851.
2. O. G. Chekina, and L. M. Keer, 1998, “Wear-Contact Problems and Modeling of Chemical-Mechanical Polishing,” Journal of Electrochemical Society, Vol. 145, pp. 2100-2106.
3. Jerry M. Chen and Yuan-Cheng Fang, 2001, “Hydrodynamic Characteristics of the Thin Fluid Film in Chemical-Mechanical Polishing,” IEEE Transactions on Semiconductor Manufacturing.
4. L. M. Cook, 1990, “Chemical Processes in Glass Polishing,” Journal of Non-Crystalline Solids, Vol. 120, pp. 152-171.
5. Y. Gotkis, D. Schey, S. Alamgir, J. Yang, and K. Holland, 1998, “Cu CMP with Orbital Technology. Summary of the Experience,” IEEE/SEMI Advanced Semiconductor Manufacturing conference, pp. 364-371.
6. K. L. Johnson, 1985, Contact Mechanics, Cambridge University Press.
7. J. Jiang, F. Sheng, and F. Ren, 1998, “Modeling of two-body Abrasive Wear under Mutliple Contact Condition,” Wear, Vol. 217, pp. 35-45.
8. S. Kondo, N. Sakuma, Y. Homma, Y. Goto, N. Ohashi, H. Yamaguchi, and N. Owada, 2000, “Abrasive-Free Polishing for Copper Damascene Interconnection,” Journal of Electrochemical Society, Vol. 147, pp.3907-3913.
9. C. W. Liu, B. T. Dai, W. T. Tseng, and C. F. Yeh, 1996, “Modeling of the Wear Mechanism during Chemical-Mechanical Polishing,” Journal of Electrochemical Society, Vol. 143, pp. 716-721.
10. M. A. Moore, and P. A. Swanson, 1983, “The Effect of Particle Shape on Abrasive Wear,” Proc. of Wear of Materials, pp. 1-11.
11. G. Nanz and L. E. Camilletti, 1995, “Modeling of Chemical-Mechanical Polishing : A Review,” IEEE Transactions on Semiconductor Manufacturing, Vol. 8, pp. 382-389.
12. P. R. Nayak, 1971, “Random Process Model of Rough Surface,” Journal of Lubrication Technology, Vol. 398, pp. 410-411.
13. W. J. Patrick, W. L. Guthrie, C. L. Standley, and P. M. Schiable, 1991, “Application of Chemical-Mechanical Polishing to the Fabrication of VLSI Circuit Interconnections,” Journal of Electrochemical Society, Vol. 138, pp.1778-1784.
14. S. R. Runnels, 1994, “Feature-Scale Fluid-Based Erosion Modeling for Chemical-Mechanical Polishing,” Journal of Electrochemical Society, Vol. 141, pp. 1900-1904.
15. S. R. Runnels and L. M. Eyman, 1994, “Tribology Analysis of Chemical-Mechanical Polishing,” Journal of Electrochemical Society, Vol. 141, pp. 1698-1701.
16. J. M. Steigerwald, S. P. Murarka, and R. J. Gutmann, 1997, Chemical-Mechanical Planarization of Microelectronic Materials, John Wiley & Sons, Inc.
17. S. Sundararajan, D. G. Thakurta, D. W. Schwendeman, S. P. Murarka, and W. N. Gill, 1999, “Two-Dimensional Wafer-Scale Chemical-Mechanical Planarization Models Based on Lubrication Theory and Mass Transport,” Journal of Electrochemical Society, Vol. 146, pp. 761-766.
18. D. G. Thakurta, C. L. Borst, D. W. Schwendeman, R. J. Gutmann, and W. N. Gill, 2000, “Pad Porosity, Compressibility and Slurry Delivery Effects in Chemical-Mechanical Planarization : Modeling and Experiments,” Thin Solid Flims, Vol. 366, pp. 181-190.
19. J. Tichy, J. A. Levert, L. Shan, and S. Danyluk, 1999, “Contact Mechanics and Lubrication Hydrodynamics of Chemical-Mechanical Polishing,” Journal of Electrochemical Society, Vol. 146, pp. 1523-1528.
20. D. Wang, J. Lee, K. Holland, T. Bibby, S. Beaudoin, and T. Cale, 1997, “Von Miss Stress in Chemical-Mechanical Polishing Processes,” Journal of Electrochemical Society, Vol. 144, pp. 1121-1127.
21. J. A. Williams, 1994, Engineering Tribology, Oxford University Press.
22. Y. Xie, and B. Bhushan, 1996, “Effects of Particle Size, Polishing Pad and Contact Pressure in Free Abrasive Polishing,” Wear, Vol. 200, pp. 281-295.
23. T. K. Yu, C. C. Yu, M. Orlowski, 1993, “A Statistical Polishing Pad Modal for Chemical-Mechanical Polishing,” International Electron Devices Meeting Technical Digest, pp. 865-868.
24. T. K. Yu, C. C. Yu, M. Orlowski, 1994, “Combined Asperity Content and Fluid Flow Model for Chemical-Mechanical Polishing,” Proceedings of IEEE International Workshop on Numerical Modeling of Processes and Devices for Integrated Circuits, pp. 29-34.
25. 王建榮,林慶福和林必窕,1999,半導體平坦化CMP技術,全華科技圖書股份有限公司.
26. 周孟賢,2000,化學機械研磨時控製程參數最佳化技術,國立中興大學機械工程學系碩士論文。
27. 曾偉志,1996,”機械應力在化學機械拋光製程中所扮演的角色,”毫微米元件實驗室通訊,第三卷第二期。
28. 蔡宏榮和鄭友仁,2000,”晶圓化學機械研磨之顆粒研磨漿料的磨潤分析,”第24屆全國力學會議論文集(p001)。
29. 蔡明義,1999,晶圓化學機械平坦化製程之機械磨耗機制研究與實驗探討,國立中興大學機械工程學系碩士論文。
30. 蔡明蒔,2000,”金屬薄膜化學機械研磨技術於多層嵌入式連線製程之應用,” 電子與材料,第六期,頁114-119。
31. 陳俊達,2000,”銅膜之化學機械研磨製程應力作用對磨潤化學反應速率之影響,”國立成功大學機械工程學系碩士論文。
32. 陳辰靜,2000,銅金屬嵌入式導線之化學機械研磨技術研究,國立交通大學材料科學與工程研究所碩士論文.
33. 楊春欽(譯),1983,磨潤學原理與應用,科技圖書股份有限公司.
34. 劉興村,2000,低介電常數材料對二氧化矽覆蓋層化學機械研磨行為之影響,國立中興大學機械工程學系碩士論文。
35. 戴寶通,1997,”化學機械研磨機制探討及耗材的發展,” 電子月刊,第三卷第三期,頁63-67。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔