(3.230.154.160) 您好!臺灣時間:2021/05/08 00:29
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

: 
twitterline
研究生:謝俊杰
研究生(外文):Hsieh June Jye
論文名稱:受到軸向力及磁場的樑之振動分析
論文名稱(外文):Vibration Analysis of A Beam With Axial Load and Magnetic Field
指導教授:張 太 平 博 士
指導教授(外文):Chung Tai Ping
學位類別:碩士
校院名稱:國立中興大學
系所名稱:應用數學系
學門:數學及統計學門
學類:數學學類
論文種類:學術論文
論文出版年:2001
畢業學年度:89
語文別:中文
中文關鍵詞:Magnetic fieldGalerkin methodRunge-kutta method
相關次數:
  • 被引用被引用:0
  • 點閱點閱:107
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:12
  • 收藏至我的研究室書目清單書目收藏:0
在這篇論文中,我們研究固定端樑的暫態振動,而此樑受到磁場、軸向力、均勻彈簧支撐、阻尼及橫向載重的作用,其中感應磁場(induced magnetic field)、磁化強度(magnetization)、磁感應(magnetic induction)等關係式亦被求出,樑的運動方程式是由Hamilton 定理推導而得。為求此系統的解,我們先假設一個滿足邊界條件的近似位移函數,之後再採用Galerkin 的方法求解,最後,我們求得第一個模態的位移解。
樑在穩定的振動情況下,受橫向磁場的作用越大則位移越小、振動頻率越小;受軸向壓力越大則位移越大、振動頻率越小。

In this study, the transient vibration of a fixed-fixed beam is considered. The transverse magnetic force, transverse magnetic couple, axial force, uniform translation spring force, transverse surface force, and the damper are also considered in the system. The relationships between magnetic induction, induced magnetic field and magnetization are solved. The equation of motion of the beam is derived by using the Hamilton’s principle. In order to solve the system equation, an approximate displacement function that satisfies the boundary conditions is assumed, and then the Galerkin method is adopted to obtain the solution of the system. Finally, the displacement of the beam is presented for the first mode. Under stable situations, the more the transverse magnetic field increases, the more the displacement and the frequency decrease, also the more the compressive axial load increases, the more the displacement increases and frequency decreases.

CONTENTS
ABSTRACT
1. INTRODUCTION…….……………………………….…………………………..1
2. EQUATION OF MOTION…………………………………………………….3
3. ANALYTICAL PROCEDURE……………………………………………………8
4. GALERKIN’S METHOD.……….……..………………………………………12
5. NUMERICAL RESULTS AND DISCUSSIONS…………………..…………….17
6. CONCLUSIONS…………………………………………………………………21
REFERENCES…………………….………………………….……………………22

References
1.Rreitz. Milford. Christy Foundations Of Electromagnetic Theory, Addison, Wesley.
2. Y. S. Shin and G. Y. Wu, and J. S. Chen, Transient Vibrations of a Simply-Supported Beam with Axial Loads and Transverse Magnetic Fields MECH. STRUCT. & MACH., 26(2), 115-130 (1998)
3. F. C. and Moon and Y. H. Pao, Vibration and dynamic instability of a beam-plate in a transverse magnetic field, J. Appl. Mech.36: 92-100 (1969).
4. S.A. Ambartsumian, Magneto-elasticity of thin plates and shells, J. Appl. Mech. Rev. 35: 1-5 (1982)
5. F.C. Moon, The Mechanics of ferroelastic plates in a uniform magnetic field, J. Appl. Mech. 37: 153-158 (1970).
6. A. A. F. Van de Ven, Magnetoelastic buckling of thin plates in a uniform transverse magnetic field, J. Elasticity. 8:297-312 (1978)
7. D. V. Wallerstein and M. O. Peach, Magnetoelastic buckling of beams and thin plates of magnetically soft material, J. Appl. Mech. 39: 451-455 (1972).
8. F.C. Moon and Y. H. Pao, Magnetoelastic buckling of a thin plate, J. Appl. Mech. 37: 53-58 (1968).
9. J. M. Dalrymple, M. O. Peach, and G. L. Viegelahn, Magnetoelastic buckling of thin magnetically soft plates in cylindrical mode, J. Appl. Mech. 41: 145-150 (1974).
10. J. M. Dalrymple, M. O. Peach, and G. L. Viegelahn, Edge effect influence on Magnetoelastic buckling rectangular plates, J. Appl. Mech. 44: 305-310 (1977).
11. K. Miya, k. Hara, and K. Someya, Experimental and theoretical study on magnetoelastic buckling of ferroelastic cantilevered beam-plate, J. Appl. Mech. 45: 355-360 (1978).
12. Henery L. Langhaar, Energy Methods in Applied Mechanics, John Wiley and Sons, Inc. New York London.
13. M. L. James/G. M. Smith, J. C. Wolfford / P. W. Whaley, Vibration of Mechanical and Structural System.
14. Larry J. Segerlind, Applied Finite Element Analysis, John Wiley and Sons.
15. G. Goudjo and G. A. Maugin, On the static and dynamic stability of soft-ferromagnetic elastic plates, J. Mec. Thero. Appl. 2:947-975 (1985)
16. H. Kojima and K. Nagaya, Nonlinear forced vibration of a beam with a mass subjected to alternating electromagnetic force, Bull. JSME 28:468-474(1985)

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔