(18.206.187.91) 您好!臺灣時間:2021/05/19 00:34
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

: 
twitterline
研究生:盧啟元
研究生(外文):Chi-Yuan Lu
論文名稱:吸附劑/觸媒應用於乾式洗滌法處理焚化廢氣SO2之研究
指導教授:魏銘彥
指導教授(外文):Ming-Yen Wey
學位類別:碩士
校院名稱:國立中興大學
系所名稱:環境工程學系
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2001
畢業學年度:89
語文別:中文
論文頁數:122
中文關鍵詞:焚化乾式洗滌塔袋濾式集塵器酸性氣體吸附劑觸媒還原氣體
外文關鍵詞:incinerationdry scrubberfabric filteracid gassorbentscatalystreducing gas
相關次數:
  • 被引用被引用:2
  • 點閱點閱:408
  • 評分評分:
  • 下載下載:76
  • 收藏至我的研究室書目清單書目收藏:1
現今焚化廠空氣污染防治設備係以半乾式或乾式洗滌塔串聯袋濾式集塵器為主,其中乾式洗滌法於去除酸性氣體時,容易因鈣基吸附劑與酸性氣體的反應效率不高,而需使用較高的化學計量比,導致產生大量的反應灰,不僅增加袋濾式集塵器的負荷,同時也提高了空氣污染防治設備的防治成本及反應灰需妥善處理以防止其產生二次污染的問題。由資源回收再利用及減廢的觀點,用於工業的吸附劑/觸媒由於具有再生循環使用的效用,當可解決傳統吸附劑帶來之問題。
本研究即是將吸附劑/觸媒應用於焚化廠空氣污染防治設備之乾式除酸洗滌塔中之可行性探討。利用吸附劑/觸媒之吸附/催化特性以增進酸性氣體之去除,吸附劑/觸媒的吸附/催化作用為:(1)以吸附反應除去二氧化硫、氯化氫等酸性氣體。(2)藉由催化反應,催化氮氧化物與還原氣體(NH3)反應,以達氮氧化物之去除。
本研究採用乾式洗滌塔整合袋濾式集塵器,探討吸附劑/觸媒對酸性氣體之去除效率,探討的變數有(1)吸附劑/觸媒種類(CuO/Al2O3、CuO+CeO2/Al2O3 及CeO2/Al2O3)。(2)酸性氣體組成(二氧化硫、氮氧化物及氯化氫)。(3)還原氣體NH3噴注。
研究結果指出CuO/Al2O3、CuO+CeO2/Al2O3 及CeO2/Al2O3等三種吸附劑/觸媒皆可有效控焚化過程中酸性氣體的排放,惟不同活性相對酸性氣體的除去反應不一。整體而言,三種吸附劑/觸媒對二氧化硫及氯化氫去除效率各有80%及95%以上極佳的去除效果,其中以CuO+CeO2/Al2O3具略優於另二者的除酸效果;吸附劑/觸媒對氮氧化物的去除效果並不明顯且噴入的還原氣體(NH3)無法有效的行還原脫氮反應;整體而言,當煙道氣中有SO2、NOX、HCl等三種酸性氣體共存時對吸附劑/觸媒的酸性氣體去除之抑制作用不大。
The primary objective at present work is to study the possibility of sorbent/catalyst replacing the sorbent for removing the acid gas, especially of simultaneous removing SO2 and NOX in the flue gas. A dry scrubber integrated with fabric filter was employed to study the removal efficiency of acid gas in the flue gas . Sorbents/catalyst containing cerium oxide and copper oxide supported on alumina were prepared by impregnation. The reduction and sulfidation reaction were studied in a moving-bed reactor, and the parameters evaluated included (1) the different sorbent/catalysts, (2) the compostion of acid gas (SO2, NOX, HCl and (3) reducing agent (NH3).
The results showed that all kind of sorbents/catalyst could successfully decrease the emission of acid gas during incineration processes when SR is 2. On the whole , CuO/Al2O3, CuO+CeO2/Al2O3 and CeO2/Al2O3 all have significant absorption efficiency on SO2 and HCl out of sight, but not on NOX that the flue gas was too complex to promote reducing gas (NH3) effectively in the flue gas for deNOX. Besides , when SO2 were coexisted with NOX and HCl , the inhibiting effects of coexisted SO2, NOX and HCl on acid gas removing is not significant.
目 錄
中文摘要 I
ABSTRACT III
目 錄 IV
圖目錄 VII
表目錄 IX
第一章 緒論 1
1-1 導言 1
1-2 研究的目的與內容 1
第二章 文獻回顧 5
2-1 酸性氣體的生成與控制 5
2-2 SO2的污染防治技術 7
2-2-1 回收法(recovery process ) 9
2-2-1-1觸媒還原法(catalytic reduction) 9
2-2-1-2 活性碳吸附法 13
2-2-1-3吸附劑/觸媒吸附法 13
2-2-2丟棄法(throwaway) 20
2-3 吸附劑/觸媒的探討 21
2-3-1 擔體 22
2-3-2 活性相的探討 23
2-3-3 吸附劑/觸媒的吸附反應、機制探討 24
2-3-4 吸附劑/觸媒除硫效果的影響因子 27
2-3-5 吸附劑/觸媒的反應器型式 31
第三章 實驗設備及方法 34
3-1 吸附劑/觸媒的製備 35
3-1-1 擔體及活性相的選用 35
3-1-2 吸附劑/觸媒的配製 35
3-2 實驗步驟 38
3-2-1實驗設備 38
3-2-2 實驗流程與操作條件 43
3-2-3 進料物種之組成與配製 45
3-3 樣品分析 49
3-3-1 吸附劑/觸媒的特性分析 49
3-3-2 酸性氣體濃度分析 52
第四章 結果與討論 54
4-1 吸附劑/觸媒之特性 54
4-1-1 表面結晶物種分析 54
4-1-1-1 擔體的繞射分析 55
4-1-1-2 吸附劑/觸媒的繞射分析 55
4-1-2比表面積分析 60
4-1-3 表面結構分析 62
4-1-4 成分組成分析 64
4-1-5 元素分析 65
4-2 吸附劑/觸媒對酸性氣體之去除 66
4-2-1 擔體對酸性氣體的去除 66
4-2-2 SR值對吸附劑/觸媒去除酸性氣體的影響 67
4-2-3 吸附劑/觸媒對SO2的去除 67
4-2-4 吸附劑/觸媒對HCl的去除 71
4-2-5 吸附劑/觸媒對NOX的去除 73
4-3 熱力平衡模式 78
4-3-1 模式介紹與模擬方法 78
4-3-1-1 熱力平衡介紹─最小自由能法 78
4-3-1-2 模式介紹 80
4-3-1-3 模擬條件與方法 81
4-3-2 模擬結果 83
第五章 結論與建議 89
5-1 吸附劑/觸媒對焚化廢氣中酸性氣體的控制 89
5-2 建議 91
參考文獻 93
附錄一 吸附劑/觸媒反應前後的X光繞射分析圖譜 98
附錄二 吸附劑/觸媒反應前後的孔隙分布曲線 109
附錄三 吸附劑/觸媒與酸性氣體反應前後的表面結構圖 111
附錄四 不同實驗試程-酸性氣體進出口濃度、去除效率 113
附錄五 熱力平衡模式於不同操作之模擬生成物種莫耳濃度 119
Agnihotri, R., Chauk, S.S., Mahuli, S.K. and Fan, L.S.. Sorbent/Ash Reactivation for Enhanced SO2 Capture Using a Novel Carbonation Technique. Ind. Eng. Chem. Res., 38, 812-819(1999).
Akyurtlu, J.F. and Akyurtlu, A.. Beavior of ceria-copper oxide sorbents under sulfation conditions. Chemical Engineering Science , 54, 2991-2997(1999).
Akyurtlu, J.F. and Akyurtlu, A.. Hot gas desulfurization with vanadium-promoted zinc ferrite sorbents. Gas Sep. Purif, 9(1), 17-25(1995).
Alonso, L., Palacios, J.M., Garcia, E. and Moliner, R.. Characterization of Mn and Cu oxides as regenerable sorbents for hot coal gas desulfurization. Fuel Processing Technology, 62, 31-44(2000).
Atakul, H., Wakker, J.P., Gerritsen, A.W. and van den Berg, P.J.. Regeneration of MnO/r-Al2O3 used for high-temperature desulfurization of fuel gases. Fuel, 75(3), 373-378(1996).
Centi, G. and Perathoner, S.. Role of the Size and Texture Properties of Copper-on-Alumina Pellets during the Simultaneous Removal of SO2 and NOX from Flue Gas. Ind. Eng. Chem. Res, 36, 2945-2953(1997).
Centi, G., Passarini, N., Perathoner, S. and Riva A.. Combined DeSOX/DeNOX Reaction on a Copper on Alumina Sorbent-Catalyst. 1. Mechanism of SO2 Oxidation-Adsorption. Ind. Eng. Chem. Res , 31, 1947-1955(1992).
Christoforou, S.C., Efthimiadis, E.A. and Vasalos, I.A.. Sulfidation-Regeneration Cycles of ZnO- and CaO-Containing Sorbents. Envion. Sci. Techol, 29, 372-383(1995).
Dow, W.P., Wang, Y.P. and Huang, T.J.. TPR and XRD studies of yttria-doped ceria/r-alumina-supported copper oxide catalyst. Applied Catalysis A: General, 190, 25-34(2000).
Eguchi, K., Watabe, M., Machida, M. and Arai, H.. Selective removal of NO by absorption in mixed oxide catalysts. Catalysis Today, 27, 297-305(1996).
Elseviers, W.F. and Verelst, H.. Transition metal oxides for hot gas desulphurisation. Fuel, 78, 601-612(1999).
Gao, S., Nakagawa, N., Kato, K., Inomata, M. and Tsuchiya, F.. Simultaneous SO2/NOX removal by a powder-particle fluidized bed. Catalysis Today , 29, 165-169(1996).
Garcia, E., Cilleruelo, C., Ibarra, J.V., Pineda, M. and Palacios, J.M.. Thermogravimertic study of regenerable sulphur sorbents for H2S retention at high temperature. Thermochimica Acta , 306, 23-30(1997).
Harriott, P. and Markussen, J.M.. Kinetics of Sorbent Regeneration in the Copper Oxide Process for Flue Gas Cleanup. Ind. Eng. Chem. Res, 31, 379-389(1992).
Kartheuser, B., Hodentt, B.K., Riva, A., Centi, G., Matralis, H., Ruwet, M., Grange, P. and Passarini N.. Temperature-Programmed Reduction and X-ray Photoelectron Spectroscopy of Copper Oxide on Alumina following Exposure to Sulfure Dioxide and Oxygen. Ind. Eng. Chem. Res, 30, 2105-2113(1991).
Khalili, N.R., Jain, H. and Arastoopour H.. Synthesis and characterization of catalysts produced from paper mill sludge. I. Determination of NOX removal capability. Journal of Hazardous Materials, 80(B), 207-221(2000).
Kijlstra, W.S., Biervliet, M., Poels, E.K. and Bliek, A.. Deactivation by SO2 of MnOX/Al2O3 catalysts used for the selective catalytic reduction of NO with NH3 at low temperatures. Applied Catalysis B: Environmental , 16, 327-337(1998).
Larsson, P.O. and Andersson A.. Oxide of copper, ceria promoted copper, manganese and copper manganese on Al2O3 for the combustion of CO, ethyl acetate and ethanol. Applied Catalysis B: Environmental, 24, 175-192(2000).
Lee, Y.S., Kim, H.T.and Yoo, K.O.. Effect of Ferric Oxide on the High-Temperature Removal of Hydrogen Sulfide over ZnO-Fe2O3 Mixed Metal Oxide Sorbent. Ind. Eng. Chem. Res, 34, 1181-1188(1995).
Macken, C and Hodnett, B.K.. Reductive Regeneration of Sulfate CuO/Al2O3 Catalyst — Sorbents in Hydrogen, Methane, and Steam. Ind. Eng. Chem. Res, 37, 2611-2617(1998).
Ozawa, M. and Loong, C.K.. In situ X-ray and neutron powder diffraction studies of red behavior in CeO2-containing oxide catalysts. Catalysis Today, 50, 329-342(1999).
Pollack, S.S., Chisholm, W.P., Obermyer, R.T., Hedges, S.W., Ramanathan, M. and Montano, P.A.. Properties of Copper/Alumina Sorbents Used for the Removal of Sulfur Dioxide. Ind. Eng. Chem. Res, 27, 2276-2282(1988).
Poston, J.A.. A Reduction in the Spalling of Zinc Titanate Desulfurization Sorbents through the Addition of Lanthanum Oxide. Ind. Eng. Chem. Res, 35, 875-882(1996).
Sasaoka, E., Sada, N., Manabe, A., Uddin, M.A. and Sakata, Y.. Modification of ZnO-TiO2 High-Temperature Desulfurization Sorbent by ZrO2 Addition. Ind. Eng. Chem. Res, 38, 958-963(1999).
Slimane, R.B. and Abbasian, J.. Regenerable mixed metal oxide sorbents for coal gas desulfurization at moderate temperatures. Advances in Environmental Research, 4, 147-162(2000).
Stern, D.L., Nariman, K.E., Buchanan, J.S., Bhore, N.A., Johnson, D.L. and Grasselli, R.K.. The Mobil Oil SOX Treatment Process(MOST).Catalytic removal of SOX and H2S from refinery tailgas. Catalysis Today, 55, 311-316(2000).
Svachula, J., Alemany, L.J., Ferlazzo, N., Forzatti, P., Tronconi, E. and Bregani, F. Oxidation of SO2 to SO3 over Honeycomb DeNoxing Catalysts. Ind. Eng. Chem. Res, 32, 826-834(1993).
Wang, Z.M. and Lin, Y.S.. Sol-Gel-Derived Alumina-Supported Copper Oxide Sorbent for Flue Gas Desulfurization. Ind. Eng. Chem. Res., 37, 4675-4681(1998).
Xu, G., Wang, B., Suzuki, H., Gao, S., Ma, X., Nakagawa, N. and Kato, K.. Removal Efficiency of the Combined Desulfurization/Denitration Process Using Powder-Particle Fluidized Bed. Journal of Chemical Engineering of Japan, 32(1), 82-90(1999).
Yoo, K.S., Kim, S.D. and Park, S.B.. Sulfation of Al2O3 in Flue Gas Desulfurization by CuO/r-Al2O3 Sorbent. Ind. Eng. Chem. Res , 33, 1786-1791(1994).
Zeng, Y., Kaytakoglu, S. and Harrison, D.P.. Reduced cerium oxide as an efficient and durable high temperauture desulfurization sorbent. Chemical Engineering Science, 55, 4893-4900(2000).
Zeng, Y., Zhang, S., Groves, F.R. and Harrison, D.P.. High temperature gas desulfurization with elemental sulfur production. Chemical Engineering Science , 54, 3007-3017(1999).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊