(18.204.227.34) 您好!臺灣時間:2021/05/19 08:03
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:黃俊彥
論文名稱:固定污染源煙道排放之TSP、PM10及PM2.5微粒成份組成分析
指導教授:鄭曼婷鄭曼婷引用關係
指導教授(外文):Man-Ting Cheng
學位類別:碩士
校院名稱:國立中興大學
系所名稱:環境工程學系
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2001
畢業學年度:89
語文別:中文
論文頁數:98
中文關鍵詞:污染源組成資料PM10PM2.5
外文關鍵詞:source profilePM10PM2.5
相關次數:
  • 被引用被引用:8
  • 點閱點閱:2298
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究主要分析中部地區重大固定污染源排放之粒狀物的特性和化學成份,建立不同行業別空氣污染源排放微粒的組成資料,採樣分析之行業別包括:重油鍋爐燃燒、燃煤電廠、水泥廠生料磨及冷卻爐、鋼鐵廠熔鐵爐及鋼鐵廠加熱爐,採樣之方法遵照環保署公告之標準方法,主要不同點是以具有旋風分離器(Cyclone)的濾紙採樣器替代傳統的石英濾筒,以避免濾筒分析上之困難。採樣器可將煙道排放微粒分為PM10及PM2.5二種粒徑範圍收集,此外,未使用旋風分離器所採集的樣本視為總懸浮微粒(TSP)。採集之微粒樣品分別以離子層析儀、總有機碳分析儀、ICP-AES及ICP-MS分析微粒之陰陽離子成份、含碳物質及金屬元素等共30種微粒成份。
分析結果顯示,以6號重油為燃料之燃油鍋爐煙道排放之PM10有69 %至92 %質量集中於PM2.5之間,此外其PM10的主要成份為SO42-(15.3 ±6.9 %)、EC(7.6 ±8.6 %)、Ni(5.4 ±4.9 %)、Fe(5.0 ±4.9 %)、OC(1.9 ±3.5 %)和V(1.0 ±0.8 %)。各鍋爐間排放主要成份相近但含量變異值大,微量金屬元素主要存在於細粒中。重油鍋爐的指標金屬元素為Ni、V, Ni/V比在1.0∼2.1之間,可視為重油燃燒之一特定比值。研究結果亦顯示TSP與PM2.5的微粒組成資料有明顯之差異。
Al、Fe、S、K、Ca及Mg可視為燃煤電廠煙道廢氣主要排放之金屬元素,鋼鐵廠熔鐵爐煙道排放微粒組成資料中,Mn和Fe於PM10中的比例各為13.9 %及8.3 %),水泥廠生料(生料磨)及熟料(冷卻爐)製程中排放微粒成份主要元素均以Ca為主。Ca元素的含量範圍在24∼46%之間,遠超過其他污染源含量,故Ca可視為水泥廠之特徵元素,Ca/Al比值平均為17.9,可視為水泥廠排放之特徵比值。
The purpose of this research is to investigate the characteristics and the chemical compositions of particulate emissions from various major stationary pollution sources in the central Taiwan. The stationary sources included oil-fired boilers, coal-fired power plant, cement ball mill and kiln, steel foundry and steel heating treatment-furnace. Samples were collected with a modified sampling train of the Method 5. Special cyclone inlets designed for collecting PM10 and PM2.5 were used. Particulates collected without using the cyclone inlets were considered as total suspended particulate (TSP). All the samples were collected on quartz filters. Twenty elements were analyzed by high-pressure bomb acid digestion incorporated with ICP-AES or ICP-MS. Eight soluble ions including Cl-, NO3-, SO42-, Na+, NH4+, K+, Mg2+ and Ca2+ were extracted and analyzed by ion chromatography. Total organic carbon analyzer was used to analyze organic and elemental carbon as well.
The results of the analysis demonstrated 69% to 92% of PM10 emitted from No. 6 fuel oil-fired boilers distributed in the fine particle size range. Furthermore, sulfate, elemental carbon, nickel (Ni), iron, organic carbon and vanadium (V) were the major contents and accounted for 15.3 ± 6.9 %, 7.6 ± 8.6 %, 5.4 ± 4.9 %, 5.0 ± 4.9 %, 1.9 ± 3.5 %, 1.0 ± 0.8 %, respectively. The trace elements mainly distributed in PM2.5. Ni and V were the marked elements for the emissions from oil-fired boilers. Ratios of Ni to V were found to be in the range between 1.0 and 2.1. The result also showed that the compositions of TSP and PM2.5 were significantly different.
Al, Fe, S, K, Ca and Mg were the major elements in particulates emitted from the coal-fired power plant. Results also showed that Mn and Fe were the marked elements for the particulate emissions from steel foundry Mn and Fe accounted for 17.6 % and 13.9 % respectively. Furthermore, Ca was the marked element and accounted for 24 % to 46 % of the emissions from cement ball mill and kiln. The ratio of Ca to Al was 17.9, which could be considered as a marker for the emissions from the cement production.
目錄
摘要
第一章 前言1
1.1 研究緣起1
1.2 研究目的2
1.3 研究方法2
第二章 文獻回顧5
2.1 污染源化學組成資料之建立5
2.2 固定污染源研究之文獻探討6
2.3 煙道採樣方法的介紹11
2.3.1 煙道內粒狀物採樣原理(U.S EPA Method 5)11
2.3.2 現行排放管道中粒狀污染物採樣及其濃度之測定方法12
2.4 污染源成份分析17
2.4.1 元素碳、有機碳17
2.4.2 金屬元素分析18
2.4.3 離子分析23
第三章 研究方法25
3.1 污染源資料收集與實地踏勘25
3.2 煙道採樣方法的建立26
3.2.1 煙道採樣裝置說明29
3.2.2 採樣公式計算30
3.2.3 採樣儀器校正35
3.2.4 現場採樣36
3.3元素組成分析37
3.3.1 水溶性陰陽離子分析37
3.3.2 含碳量分析40
3.3.3 金屬成份分析42
第四章 結果與討論45
4.1 固定污染源排放之粒狀物粒徑分析結果45
4.2 鍋爐燃燒煙道排放元素組成分析49
4.3 燃煤電廠煙道排放元素組成分析56
4.4 水泥廠生料磨及冷卻爐煙道排放元素組成分析61
4.5 鑄鐵廠溶鐵爐煙道排放元素組成分析66
4.6 鋼鐵廠加熱爐煙道排放元素組成分析71
4.7 各行業排放主要元素分析76
4.8 固定污染源與逸散性污染源比較81
4.9 固定污染源排放金屬元素粒徑分佈83
4.10 化學質量平衡受體模式測試結果85
第五章 結論與建議88
5.1 結論88
5.2 建議90
參考文獻92
附錄I 污染源成份組成數據……………………………………...…I -1
附錄Ⅱ 污染源TSP、PM10及PM2.5成份組成數據圖………...……Ⅱ-1
附錄Ⅲ 煙道採樣頭比對結果……………………………..…...……Ⅲ-1
附錄Ⅳ 受體模式測試所採用的大氣懸浮微粒數據及污染源排放的組成數據………………………………………….……………Ⅳ-1
1.Amendments to the Clean Air Act, U.S. Public Law 101-549, U.S. Gov. Printing Office, pp 314(1990).
2.Chow, J. C., J. G. Watson, J. E. Houck, L. C. Pritchett, C. F. Rogers, C. A. Frazier, R. T. Egami, and B. M. Ball, ‘‘A Laboratory Resuspension Chamber to Measure Fugitive Dust Size Distributions and Chemical Compositions,” Atmos. Environ., Vol. 28, pp. 3463-3481(1994).
3.Chen, W. C. and C. S. Wang, ‘‘An Assessment of Source Contributions to Ambient Aerosols in Central Taiwan,” J. Air Waste Manage. Assoc., Vol. 47, pp. 501-509(1997).
4.Christen, K. A. and H. Livebjerg, ‘‘A Field Study of Submicron Particles from the Combustion of Straw,’’ Aerosol Science and Technology, Vol.25:2, pp. 185-199(1996).
5.Cooke, W. F. and J. N. Wilson, ‘‘A Global Black Carbon Aerosol Model,” J. Geophysical Research, 101D, pp. 19395-19408.(1996).
6.Dalway, J.S, ‘‘Why Trace Elements are Important,” Fuel processing Technology, Vol.65-66, pp. 21-33(2000).
7.Flagan R. C., and S. K. Friedlander, ‘‘Particle formation in pulverized coal combustion: a review, in: D.T. Shaw (ED.),’’ Recent Developments in Aerosol Science, Wiley, pp. 25-59, New York(1978).
8.Gereda E., G. M. B. Marcazzan, M. P., G. W. G. and A. B., ‘‘The Microcopic Nature of Coal Fly Ash Particles Investigated by Means of Nuclear Microscopy,’’ Atmos. Environ., Vol. 29, pp. 2323-2329(1995).
9.Harrison, R. M., A. R. Deacon, M. R. Jones, and R. S. Appleby, ‘‘Sources and Processes Affecting Concentrations of PM10 and PM2.5 Particulate Matter in Birmingham (U.K.),’’ Atmos. Environ., Vol. 31, pp. 4103-4117(1997).
10.Hasasen, E., L. Aunela-Tapola, V. Kinnunen, K. Larjava, A. Mehtonen, T. Salmikangas, J. Leskela, J. Loosaar, ‘‘Emission Factors and Annual Emissions of Bulk and Trace Elements from Oil Shale Fueled Power Plants, ”The Science of the Total Environment, Vol. 198, pp. 1-12(1997).
11.Hower, J. C.,J. D. Robertson, G. A. Thomas, A. S. Wong, W. H. Schram, U. M. Graham, R. F. Rathbone and T. L. Rob. ‘‘Characterization of Fly Ash from Kentucky Power Plants,’’ Fuel, Vol 75, No. 4. pp. 403-411(1996).
12.Hopke, T. M. ‘‘Receptor Modeling in Environmental Chemistry,’’ John Wiley & Sons(1991).
13.Kuck PH, ‘‘Vanadium Mineral Commodity Profiles,’’ US Department of the Interior, Bureau of Mines. USA(1983).
14.Kauppinen, E. I. and T. A. Pajjanen, “Mass and Trace Element Size Distribution of Aerosols Emitted by a Hospital Refuse Incinerator,’’ Atmos. Environ., Vol. 24, pp. 423-429(1990).
15.Lawson, D. R., and S. V. Hering, ‘‘The Carbonaceous Species Methods Comparison Study - An Overview,” Aerosol Sci. Technol, Vol.12, pp. 1-2(1990).
16.Manane, Y. ‘‘Estimate of Municipal Refuse Incinerator Contribution to Philadelphia Aerosol Using Single Particle Analysis-Ⅱ, Ambient Measurement,” Atmos. Environ., Vol. 24, pp. 127-135(1990).
17.Milford, J. B., and C. I. Davidson, “The Size of Particulate Trace Elements in the Atmosphere ¾ A Review,’’ JAPCA, Vol. 35, pp. 1249-1260(1985).
18.Miller, C. A., V. R. Jeffery and Lombarbo, “Characterization of Air Toxics from an Oil-Fired Firetude Boiler,” J. of the Air & Waste Manage. Assoc., Vol. 46, No. 8, pp. 742-748(1996).
19.Olmez, I., A. E. Sheffield, G. E. Gordon, J. E. Houck, L. C. Pritchett, J. A. Cooper, T. G. Dzubay, and R. L. Bennett, ‘‘Compositions of Particles from Selected Sources in Philadelphia for Receptor Modeling Applications,” JAPCA, Vol 38, pp. 1392-1402(1988).
20.Ots, A, ‘‘Formation of Air-polluting Compounds While Burning Oil Shale,” Oil Shale, Vol 9, pp. 63-75(1992).
21.Pakkanen T. A., K. Veli-Matti, H. O. Christina, E. H. Risto, A. Päivi, and K. Tarja, ‘‘Atmospheric Black Carbon in Helsinki,” Atmos. Environ., Vol. 34, pp. 1497-1506(2000).
22.Senior. C.L., E. Lawrence. Bool Ⅲ, Srivats Srinivasachar, Benjamin R. Pease, Kjell Porle, ‘‘Pilot Scale Study of Trace Element Vaporization and Condensation During Combustion of a Pulverized Sub-bituminous Coal,“ Fuel Processing Technology, Vol. 63, pp. 149-165(2000)
23.Study of Hazardous Air Pollutant Emissions from Electric Utility Steam Generating Units — Final Report to Congress, U.S. EPA, EPA-453/R-98-004a(1998).
24.Tsoboi, I. et al, “Recovery of Vanadium from Oil-fired Boiler Slag by Direct Leaching and Subsequent Solvent Extraction,” J Chem Eng Jpn., Vol. 20, pp. 505-510(1987).
25.U.S. EPA, “Receptor Model Source Composition Library,” Environmental Protection Agency Research Triangle Park, NC, U.S. Department of Commerce National Technical Information Service (NTIS), EPA-450/4-85-002(1984).
26.Watson, J. G. “Chemical Element Balance Receptor Model Methodology for Assessing the Sources of Fine and Total Suspended Particulate Matter in Portland, Oregon,” Ph.D.Dissertation, Oregon Graduate Center, OR, Beaverton, OR.(1979).
27.Wei, C. and Morrison, G.M, ‘‘Platium in Road Dusts and Urban River Sediments,” Sci. Total Environ., Vol.146/147, pp. 169-174 (1994).
28.Lee, S. W., R. Pomalis, B. Kan, ‘‘A new Methodology for source Characterization of oil combustion particulate matter,” Fuel Processing Technology, Vol. 65-66, pp. 189-202(2000)
29.Ylatalo S. I., J. Hautanen, ‘‘Electrostatic precipitator penetration function for pulverized coal combustion,” Aerosol Sci. Technol., 29, pp. 17-30(1998).
30.Zoller, W. H., Gordan, G.E., Gladney, E.S., and Jones, A.G., “The Sources and Distribution of Vanadium in the Atmosphere,” Trace Elements in the Environ., pp.31-47(1972).
31.王竹方、林嘉洲、謝嘉文、蔣本基,「化學質量平衡受體模式可行性之驗證」,第十四屆空氣污染控制技術研討會,台中,第816-822頁(1997)。
32.王景良,「中部空品區污染源逸散粉塵的組成分析」,國立中興大學環境工程學系碩士論文,台中(2000)。
33.台灣省政府環境保護處南區環境保護中心,「燃油鍋爐之有害空氣污染物排放係數調查研究」,(2000)。
34.行業污染特性手冊,第二冊金屬類,行政院環保署空氣品質保護及噪音管制處,民國85年5月。
35.行業污染特性手冊,第三冊非金屬類,行政院環保署空氣品質保護及噪音管制處,民國85年5月。
36.李俊德、尤鴻昌、李文智,「鍋爐煙道廢氣重金屬之排放特徵」,1997氣膠研討會,台南,第152-161頁(1997)。
37.李文智等,「南高屏空氣污染總量管制規劃-排放源粒狀物組成調查分析」,行政院環境保護署期末報告,EPA-89-FA11-03-100(2000)。
38.蔣本基等,台北地區交通污染源與營建工程對空氣品質影響之研究及受體模式之確立,台灣大學環境工程研究所,研究報告第222號,台北市(1989)。
39.蔣本基等,「北桃地區空氣污染受體模式應用之研究 (一)」,行政院環境保護署期末報告,EPA-79-002-18-096(1990)。
40.蔣本基等,「台灣地區懸浮微粒空氣污染問題及防制之研究」,行政院環境保護署期末報告,EPA-85-1402-09-04(1996)。
41.莊秉潔等,「中部地區懸浮微粒特性及污染來源分析」,行政院國科會專題研究計畫期末報告,台中(2000)。
42.黃宗正、李正綱、仲偉濤、曾錦富、張金寶,「台中發電廠南方空氣中懸浮微粒特性研究」,第九屆空氣污染控制技術研討會論文專輯,台南,第299-313頁(1992)。
43.楊宏隆,「大氣懸浮微粒PM2.5及PM10之特性及來源分析」,國立中興大學環境工程學系碩士論文,台中(1998)。
44.楊錫賢,「大氣環境中多環芳香烴化合物段與金屬元素之特徵」,國立成功大學環境工程學系博士論文,台南(1998)。
45.陳文祥,「懸浮微粒來源本土化之確認與應用」,國立中興大學環境工程學系碩士論文,台中(1996)。
46.產業經濟,台灣鋼鐵工業發展概況(上),第156期,第13-15頁,(1994)。
47.產業經濟,台灣鋼鐵工業發展概況(下),第157期,第43-69頁,(1994)。
48.賴順安、李文智、楊錫賢,「鋼鐵工業煙道排放金屬元素之特徵」,第十六屆空污研討會論文,中壢,第797-804頁(1999)。
49.蔡瀛逸、鄭曼婷,「高污染狀態下大氣二次氣膠組成之探討」,第十五屆空氣污染控制技術研討會論文專輯,桃園,第711-718頁(1998)。
50.鄭丁元、郭崇義,「大氣與特定排放源懸浮微粒中有機碳與元素碳之分析比較」,1998年氣膠研討會論文,屏東,第266-276頁(1998)。
51.鄭曼婷,邱嘉斌,楊宏隆,陳紀綸,「沿海地區大氣懸浮微粒污染來源解析」,第十五屆空氣污染控制技術研討會,桃園,第776-782頁(1998)。
52.鄭曼婷,王景良,黃俊彥,王竹方,郭崇義,「逸散性粉塵的元素組成分析」,第十七屆空氣污染控制技術研討會,雲林,第728-733頁(2000)。
53.鄭曼婷等,「中部地區空氣污染總量管制技術資料建立與應用」,行政院環境保護署期末報告,EPA-89-FA11-03-231(2000)。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊