跳到主要內容

臺灣博碩士論文加值系統

(44.200.86.95) 您好!臺灣時間:2024/05/25 15:56
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:李國豪
研究生(外文):Kou-Hau Lee
論文名稱:以大腸桿菌表現結構蛋白-強綠色螢光素融合蛋白偵測豬瘟抗體之研究
論文名稱(外文):Rapid Detection of Anti-serum against CSFV by Structural Protein-EGFP Fusion Proteins
指導教授:張天傑
指導教授(外文):Tien-Jye Chang
學位類別:碩士
校院名稱:國立中興大學
系所名稱:獸醫微生物學研究所
學門:獸醫學門
學類:獸醫學類
論文種類:學術論文
論文出版年:2001
畢業學年度:89
語文別:中文
論文頁數:56
中文關鍵詞:豬瘟病毒綠色螢光蛋白核心蛋白E2 蛋白dot-ELISA
外文關鍵詞:classical swine fever virusGFPcore proteinE2 proteindot-ELISA
相關次數:
  • 被引用被引用:4
  • 點閱點閱:167
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
豬瘟為世界性之豬隻重大傳染病,當豬隻感染豬瘟病毒後會引起全身性出血、敗血、發燒等症狀。急性感染後死亡率高達95%~100%,當豬瘟爆發時經常伴隨嚴重的經濟損失。本實驗將豬瘟病毒3’疏水區缺損核蛋白基因與E2封套蛋白N端主要抗原區基因分別接上強綠螢光蛋白基因,分別選殖於原核表現載體pET32上構築成pcCoreD2-EGFP及pbE2N-EGFP,並以大腸桿菌表現系統表現CoreD2-EGFP與E2N-EGFP融合蛋白。以包含體純化的方法將所表現的融合蛋白萃取出來,利用螢光顯微鏡觀察及螢光光譜分析等方法,均證實這兩種融合蛋白仍具有吸收藍光與紫外光而產生綠色螢光的功能。將融合蛋白進行蛋白質膠體電泳與western blot,確定表現產物分子量大小與預期相符並具有特異性。以酵素連結免疫吸附法分析融合蛋白的抗原性,結果證實豬瘟病毒結構蛋白與增強綠螢光素的融合不會影響其抗原性。最後,我們將萃取出的二種融合蛋白分別以個別或混合作為抗原,進行Dot-ELISA應用於檢測豬隻血清中豬瘟病毒的抗體,結果證實當以E2N-EGFP與CoreD2-EGFP混合為抗原時檢測效果最佳,而單獨以E2N-EGFP進行時效果次之,CoreD2-EGFP的效果最差,但仍能與SPF豬血清的陰性對照區別。本實驗之目的在開發以豬瘟病毒結構蛋白與綠色螢光蛋白結合的融合蛋白應用於Dot-ELISA檢測豬瘟抗體,實驗結果證實此檢測方式確實可行,而此檢測方法可開發出一種較現有檢測方法更具有經濟效益及特異性、敏感性、簡便而快速的豬瘟抗體檢測方式,能提供野外與實驗室中大量檢測時使用。另外在實驗室中將血清吸附於96孔盤,配合螢光光譜分析儀可更進一步定量抗體,且所需時間亦較傳統的ELISA短,未來於次單位標識疫苗開發後亦能應用於野外株與疫苗株之鑑別診斷。
Classical swine fever (CSF) causes one of the most severe diseases in pig worldwide. Infected pigs developed pyrexia and leukopenia. Mortality rates may reach 90%~100% when acute infect, and outbreak of classical swine fever can causes large economic consequences. Classical swine fever virus (CSFV), the causative agent of classical swine fever, is a member of Pestivirinae within the family Flaviviridae. We constructed prokaryotic plasmids that express CSFV core and N-terminal half of envelope protein E2 with enhanced green fluorescent protein (EGFP). The results of fluorescent microscope and luminescent spectrophotometer examinations of fusion proteins CoreD2-EGFP and E2N-EGFP, extracted from inclusion body, showed that these fusion proteins could absorb UV light and emit green fluorescence. Results from SDS-PAGE and western blotting revealed that both fusion products have molecular masses as expected and exhibit strong reactivity to CSFV antibodies. ELISA results of immunogenecity analysis indicated fusion with EGFP would not change epitopes of CSFV structure proteins. Extracted products could be recognized by the sera of CSFV-infected swine in Dot-ELISA. The best score is using both CoreD2-EGFP and E2N-EGFP as antigen, while only E2N-EGFP is the second. Only using CoreD2-EGFP as an antigen is the lowest score of which by telling apart from SPF swine sera, the negative control. In this study, a very rapid, sensitive and specific Dot-ELISA was developed for immunological diagnosis in CSFV-infected swine. In laboratory diagnosis, CSFV-infected sera can be coated in 96-well plate after incubation with fusion proteins and examined by luminescent spectrophotometer, and the antibodies can be quantified. This immunological diagnosis method could be applied for discriminating diagnosis, when the CSFV subunit marker vaccines are used in the field.
目次
中文摘要………………………………………………………………….…….…...Ⅰ
英文摘要……………………………………………………………………..……...Ⅱ
目次………………………………………………..…………………………..…….Ⅲ
圖次……………………………………………….…………………………………Ⅴ
表次……………………………………………………….………………..………..Ⅵ
第一章緒言…………………………………………………………………...……..1
第二章文獻探討……………………………………………………………...……..3
2.1 豬瘟之歷史背景及分佈…………………………………………………....3
2.2 豬瘟之病理學、免疫學與流行病學……………………………..………..4
2.3 豬瘟病毒之特性……………………………………….………………..….7
2.4 豬瘟之診斷……………………………………………………………...….8
2.5 豬瘟病毒基因體之研究………………………………………………...…10
2.6 豬瘟病毒蛋白之研究…………………………………….……………..…11
2.7 綠色螢光蛋白………………..…………………………………..….……..14
第三章材料與方法…………………………………………………………..….….18
3.1. 豬瘟病毒結構蛋白-螢光融合蛋白表現載體之構築…………………....….…18
3.1.1 質體DNA之製備………………………………………………….…….18
3.1.2 聚合脢鏈鎖反應…………………………………………………...…….18
3.1.3 聚合脢鏈鎖反應產物之純化並與選殖用載體之接合反應…………………………………………………………………….….19
3.1.4 勝任細胞之製備與轉型作用……………………………………………19
3.1.5菌株之篩選…………………………………………………………….....20
3.2 豬瘟病毒結構蛋白-螢光融合蛋白之誘導表現與純化…………………….…20
3.2.1豬瘟病毒結構蛋白-螢光融合蛋白之誘導表現…………………….…..20
3.2.2豬瘟病毒結構蛋白-螢光融合蛋白之純化……………………………...20
3.3 豬瘟病毒結構蛋白-螢光融合蛋白之鑑定……………………………….……21
3.3.2 蛋白質膠體電泳分析(SDS-PAGE)……………………………….…21
3.3.3 西方墨點法(Western blotting)……………………………………..…22
3.3.4 螢光顯微鏡(Fluorescence microscopy)……………………..…….….22
3.3.5 酵素連結免疫吸附試驗(ELISA)………………………………….…23
3.3.6 Dot-ELISA.…………………………………………………………….…23
3.3.7 利用螢光光度計偵測吸收光譜與發射光譜……………………………23
第四章結果………………………………………………………………………....25
4.1 豬瘟病毒核蛋白與E2蛋白基因之純化與確認…………………………….…25
4.2 增強綠色螢光蛋白與豬瘟病毒核蛋白、E2蛋白融合蛋白表現載體之構築…25
4.3 增強綠色螢光蛋白與豬瘟病毒核蛋白、E2蛋白融合蛋白之表現與純化…..26
4.4 增強綠色螢光蛋白與豬瘟病毒核蛋白、E2蛋白融合蛋白之鑑定…………..26
4.4.1.螢光顯微鏡………………..………………………………………..….…26
4.4.2利用螢光光度計偵測吸收光譜與發射光譜………………………....….27
4.4.3. SDS-PAGE……………………………………...………………………..27
4.4.4. Western blot…………………..……………………………………......…28
4.4.5. 酵素連結免疫吸附試驗(ELISA)………………………………...….38
4.5增強綠色螢光蛋白與豬瘟病毒核蛋白、E2蛋白融合蛋白於Dot-ELISA之應用…………………………………………………………………………………..…28
第五章討論……………………………………………………………………..…..40
第六章參考文獻…………………………………………….…………………...…46
邱魏豪鵬。2000。碩士論文。以Pichia pastoris表現系統生產豬瘟病毒醣蛋白。國立中興大學獸醫學研究所。台中。
呂濟洋。1998。豬瘟病毒持續污染場之間控及豬瘟病毒感染對血液中淋巴次族群之影響。國立中興大學獸醫學研究所。台中。
林在春、李崇道。1983。兔化豬瘟疫苗種毒-LPC株之開發研究綜合報告。國科會報告第5號。台北。
陳瑞雯。1994。豬瘟病毒LPC疫苗株近3’端基因之核甘酸序列分析。碩士論文。國立中興大學分子生物研究所。台中。
楊平政。1998。國際畜議會豬瘟研討會感想。養豬新知第六卷第八期。竹南。
劉昭君。1998。博士論文。豬瘟病毒結構蛋白之研究。國立中興大學獸醫學研究所。台中。
彭寶瑩。2000。碩士論文。豬瘟病毒LPC株全長基因體之選殖及定序。國立中興大學獸醫學研究所。台中。
Amsterdam, A., Lin, S., Moss, L. and Hopkins, N., 1996. Requirements for green fluorescent protein detection in transgenic zebrafish embryos. Gene 173:99-103.
Becher, P., A. Kosmidou, M. Kong, M. Baroth, and H-J. Thiel. 1999. Genetic diversity of pestivirus: identification of novel groups and implications for classification. Virology 262:64-71.
Bjorklund, H., Lowings, P., Stadejek, T., Vilcek, S., Greiser-Wilke, I., Paton. D,, Belak, S. 1999. Phylogenetic comparison and molecular epidemiology of classical swine fever virus. Virus Genes 19(3):189-95
Bjorklund, H. V., Stadejek, T., Vilcek, S., Belak, S. 1998. Molecular characterization of the 3'' noncoding region of classical swine fever virus vaccine strains. Virus Genes 16(3):307-12.
Bruschke, C. J., Hulst, M. M., Moormann, R. J., van Rijn, P. A. and van Oirschot, J. T. 1997. Glycoprotein Erns of pestiviruses induces apoptosis in lymphocytes of several species. J. Virol. 71:6692-6696.
Casper, S. and Holt, C., 1996. Expression of the green fluorescent protein-encoding gene from a tobacco mosaic virus-based vector. Gene 173:69-73.
Chalfie, M. 1995. Green fluorescence protein. Photochem. Photobiol. 62:651-656
Chalfie, M., Tu, Y., Euskirchen, G., Ward, W. W., Prasher, D. C. 1994. Green fluorescent protein as a marker for gene expression. Science 263:802-805.
Clavijo, A., J. Riva, M. Mallory, F. Lin, E-M. Zhou. 2001. Development of a competitive ELISA using a truncated E2 recombinant protein as antigen for detection of antibodies to classical swine fever virus. Res. Vet. Sci. 70:1-7.
Cody, C. W., Prasher, D. C., Westler, W. M., Prendergast, F. G., Ward, W. W. 1993. Chemical-structure of the hexapeptide chromophore of the Aequorea green fluorescent protein. Biochemistry 32:1212-1218.
Cole, C. G., Henley, R. R., Dale, C. N., Mott, L. O., Torrey, J. P., Zinober, M. R., 1962. History of hog cholera research in the US Department of Agriculture 1884-1960. Agriculture Information Bulletin No. 241, USDA, Washington DC.
Colijn, E. O., Bloemraad, M., Wensvoort, G. 1997. An improved ELISA for the detection of serum antibodies directed against classical swine fever virus. Vet. Microbiol. 59:15-25.
Depner, K. R., Muller, A., Gruber, A., Rodriguez, A., Bickhardt, K., Liess, B. 1995. Classical swine fever in wild boar (Sus scrofa)--experimental infections and viral persistence. Dtsch. Tierarzt.l Wochenschr. 102:381-4
de Smit, A. J., Bouma, A., de Kluijver, E. P., Trepstra, C., Moormann, R. J. M. 2001. Duration of the protection of an E2 subunit vaccine against classical swine fever after a single vaccination. Vet. Microbiol. 78:307-317.
de Schweinitz, E. A., Dorset, M., 1903. A form of hog cholera not caused by the hog-cholera bacillus. US Bureau of Animal Industry, Circular No. 41.
Edwards, S., Fukusho, A., Lefevre, P., Lipowski, A., Pejsak, Z., Roehe, P., Westergaard, J. 2000. Classical swine fever: the global situation. Vet. Microbiol. 73:103-119.
Elberts, K., Tautz, N., Becher, P., Stoll, D., Rümenapf, T., and Thiel, H.-J. 1996. Processing in the pestivirus E2-NS2 region: identification of proteins p7 and E2p7. J. Virol. 70:4131-4135.
Epel, B., Padgett, H., Heinlein, M. and Beachy, R., 1996. Plant virus movement protein dynamics probed wiht a GFP-protein fusion. Gene 173:75-9.
Ehrig, T., O''Kane, D. and Prendergast, F., 1995. Green-fluorescent protein mutants with altered fluorescence excitation spectra. FEBS Lett. 367:163-6.
Encarnación, M,-S, Ramos, R., Lafuente, E. and de Quinto, S. L. 2001. Functional interactions in internal translation initiation directed by viral and cellular IRES elements. J. Gen. Virol. 82:973-984.
Fenner, F. J., Gibbs, E. P. J., Murohy, F. A., Rott, R., Studdert, M. J. and White, D. O. 1993. Flavividae. IN Veternary virology. 2nd ed., Academic press, Inc., Sandiego, USA.
Frankie, R. I. B., Fauqvet, C. M., Knudson, D. L. and Brown, F. 1991. Fifth report of the international Committee on taxonomy of viruses. Arch. Virol. (suppl. 2): 223-233.
Gómez-Willamandos, J. C., Ruiz-Villamor, E., Bautista, M. J., Quezada, M., Sánchez, C. P. Salgureo, F. J., Sierra, M. A. 2000. Pathogenesis of classical swine fever: renal haemorrhages and erythrodiapedesis. J. Comp. Path. 123:47-54.
Hanson, R.P. 1957. Origin of hog cholera. J. Am. Vet. Med. Assoc. 131, 211-218.
Heim, R., Prasher, D. C., Tsien, R. Y. 1994. Wavelength mutations and post-translational autoxidation of green fluorescent protein. Proc. Natl. Acad. Sci., USA. 91:12501-12504.
Ho, W. C., Li, N. J. and Lai, S. S. 1987. Purification and electron microscopic observation of hog cholera virus. J. Chinese Soc. Vet. Sci. 13:89-98
Hofmann, M. A., Brechtbuhl, K. and Stauber, N. 1994. Rapid characrerization of new pestivirus strains by direct sequencing of PCR-amplified cDNA from the 5’ non-coding region. Arch. Virol. 139:217-229
Hulst, M. M., D. F. Westera, G. Wensvoort, and R. J. M. Moormann. 1993. Glycoprotein E1 of hog cholera virus expresses in insect cells protects swine from hog cholera. J. Virol. 67:5435-5442.
Hults, M. M., and Moormann, R. J. M. 1997. Inhibition of pestivirus infection in cll culture by envelope proteins Erns and E2 of classical swine fever virus: Erns and E2 interact with different receptors. J. Gen. Virol. 78:2779-1787.
Hulst, M. M., F. E. Panoto, A. Hoekman, H. G. P. van Gennip, and R. J. M. Moormann. 1998. Inactivation of the RNase activity of glycoprotein E of classical swine fever virus result in a cytopathogenic virus. J. Virol. 72:151-157.
Inouye, S. and Tsuji, F.I., 1994. Evidence for redox forms of the Aequorea green fluorescent protein. FEBS Letters. 351:211-4.
Kahana, J., Schapp, B. and Silver, P., 1995. Kinetics of spindle pole body separation in budding yeast. Proc. Natl. Acad. Sci., USA. 92:9707-9711.
Kolupaeva V. G., Pestova, T. V., Hellen, C. U. 2000. Ribosomal binding to the internal ribosomal entry site of classical swine fever virus. RNA 6(12):1791-807.
König, M., T. Lengsfeld, T. Pauly, R. Stark, and H.-J. Thiel. 1995. Classical swine fever virus: independent induction of protective immunity by two structural glycoproteins. J. Virol. 69:6479-6486.
Kumagai, T., Shimizu, T., Matsumoto, M., 1958. Detection of hog cholera virus by its effect on Newcastle disease virus in swine tissue culture. Science 128:366-367.
Laddomada. A., 2000. Incidence and control of CSF in the wild boar in Europe. Vet. Microbiol. 73:121-130.
Lindenbach, B. D., and C. M. Rice. 1999. Genetic interaction of flavivirus nonstructure proteins NS1 and NS4A as a determinant of replicase function. J. Virol. 73:4661-4621.
Lin, T. C., Kang, B. J., Shimizu, Y., Kumagai, T., Sasahara, J. 1969. Evaluation of the fluorescent antibody--cell culture test for detection and titration of hog cholera virus. Natl. Inst. Anim. Health. Q. (Tokyo) 9(1):10-9
Lipowski, Andrzej, Christa Drexler, Zygmunt Pejsal. 2000. Safety and efficacy of a classical swine fever subunit vaccine in pregnant sows and their offspring. Vet. Microbiol. 77:99-108.
Liu, S. T., R. N., Wang, D. C., Chang, S. F., Chiang, S. C., Ho, W. C., Chang, Y. S. and Lai. S. S. 1991. Rapid detection of hog cholera virus in tissue by polymerase chain reaction. J. Virol. Meth. 35:227-236.
Loan. R. W. and Storm, M. M. 1968. Propagation and transmission of hog cholera virus in non-porcine hosts. Am. J. Vet. Res. 29:807-811.
Lorena J, Barlic-Maganja D, Lojkic M, Madic J, Grom J, Cac Z, Roic B, Terzic S, Lojkic I, Polancec D, Cajavec S. 2001. Classical swine fever virus (C strain) distribution in organ samples of inoculated piglets. Ve.t Microbiol. 81(1):1-8
Lowings, P., G. Ibata., J. Needham., and J. D. Paton. 1996. Classical swine fever diversity and evolution. J. Gen. Virol. 77:1311-1321.
Mackenzie, J. M., Khromykh, A. A., Jones, M. K., 1998. Westaway EG.Subcellular localization and some biochemical properties of the flavivirus Kunjin nonstructural proteins NS2A and NS4A. Virology 245(2):203-215.
Mattews, R. E. E. 1982. In classical and nomenclature of virus. Forth report of the international committee on taxonomy of virus. Intervirological 17:1-109.
Mayr, A., Bachmann, P. A,. Sheffy, B. E. and Siegl, G. 1968. Morphological characteristics of swine fever virus. Vet. Rec. 82:745-746.
McBryde, C.N., Cole, C.G., 1936. Crystal violet vaccine for the prevention of hog cholera. JAVMA. 89, 652-663.
Mengeling, WL., Packer, RA. 1969. Pathogenesis of chronic hog cholera: host response. Am. J. Vet. Res. 30:409-17.
Mengeling, W. L., Torrey, J. P. 1967. Evaluation of the fluorescent antibody-cell culture test for hog cholera diagnosis. Am. J. Vet. Res. 28(127):1653-9
Meyers, G. and Thiel, H.-J. 1996. Molecular characterization of pestiviruses. Adv. Virus. Res. 47:53-118
Meyers G, Saalmuller A., Buttner M. 1999. Mutations abrogating the RNase activity in glycoprotein E(rns) of the pestivirus classical swine fever virus lead to virus attenuation. J. virol. 73(12):10224-35.
Moennig, V. 1990. Pestivirus: a review. Vet. Microbio. 23:35-54
Moennig, V. 2000. Introduction to classical swine fever: virus, disease and contol policy. Vet. Microbiol.73:93-102.
Moores, S., Sabry, J. and Spudich, J., 1996. Myosin dynamics in live Dictyostelium cells. Proc. Nat.l Acad. Sci., USA. 93:443-446.
Moormann, R. J. M., van Gennip, H. G. P., Miedema, G. K. W., Hulst, M. M., and van Rijn, P. A. 1996. Infectious RNA transcribed from an engineered full-length cDNA tamplate of the genome of a pestivirus. J. Virol. 70:763-770.
Moormann, R. J. M., Warmerdam, P. A. M., van der Meer, B., Wensvoort, W. M. M., Wensvoort, G., and Hulst, M. M. 1990. Molecular cloning and nucleotide sequence of hog cholera virus strain Brescia and mapping of the gemonic region encoding envelope protein E1. Virology 177:184-198.
Moser C, Stettler P, Tratschin JD, Hofmann MA. 1999. Cytopathogenic and noncytopathogenic RNA replicons of classical swine fever virus. J Virol. 73:7787-94.
Muylaert, I. R., Galler, R., Rice, C. M. 1997. Genetic analysis of the yellow fever virus NS1 protein: identification of a temperature-sensitive mutation which blocks RNA accumulation. J. Viro.l 71(1):291-298.
Neyts J, Leyssen P, De Clercq E. 1999. Infections with flaviviridae .Verh K Acad Geneeskd Belg.61(6):661-97.
Niles, 1910. Cited by Cole et al., 1962.
OIE, 1998. International Animal Health Code. Office International des Epizooties, Paris, pp. 147-154.
OIE, 1999. World Animal Health in 1998, vol. 1. Office International des Epizooties, Paris, pp. 374-375.
Olsen, K., McIntosh, J. and Olmstead, J., 1995. Analysis of MAP4 function in living cells using green fluorescent protein (GFP) chimeras. J. Cell Biol. 130:639-650.
Ormö, M., Cubitt, A., Kallio, K., Gross, L., Tsien, R. and Remington, S., 1996. Crystal structure of the Aequorea victoria green fluorescent protein. Science. 273:1392-1395.
Paton DJ, McGoldrick A, Greiser-Wilke I, Parchariyanon S, Song JY, Liou PP, Stadejek T, Lowings JP, Bjorklund H, Belak S. 2000. Genetic typing of classical swine fever virus. Vet Microbiol. 73(2-3):137-57
Pestova, T. V, Shatsky, I. N., Fletcher, S.P., Jackson, R. J., Hellen, C. U. T. 1998. A prokaryotic-like mode of cytoplasmic eukaryotic ribosome binding to the initiation codon during internal translation of hepatitis C virus and classical swine fever virus RNAs. Genes & Development. 12:67-83.
Prasher DC, Eckenrode VK, Ward WW, Prendergast FG, Cormier MJ. 1992. Primary structure of the Aequorea Victoria green fluorescent protein. Gene. 111: 229-233
Proutski, V., Gritsun, T. S., Gould, E. A., Holmes, E. C. 1999. Biological consequences of the deletion within the 3’-untranslated region of flaviruses may be due to rearrangement of RNA secondary structure. Virus Res. 64(2):107-23
Proutski, V., Gaunt, M. W., Gould, E. A., Holmes, E. C. 1997. Secondary structure of the 3’-untranslated region of yellow fever virus: implicatoins for virulence, attenuation and vaccine development. J. Gen. Virol. 78:1543-9
Proutski, V., Gould, E. A., Holmes, E. C. 1997. Secondary structure of the 3’ untranslated region of flavirus: similarties and differences. Nucleic Acid Res. 25(6):1194-202
Rijnbrand, R., van der Straaten, T., van Rijn, P. A., Spaan, W. J., Bredenbeek, P. J. 1997. Internal entry of ribosomes is directed by the 5'' noncoding region of classical swine fever virus and is dependent on the presence of an RNA pseudoknot upstream of the initiation codon. J. Virol. 71(1):451-7.
Rümenapf, T., Meyers, G., Stark, R. and Thiel, H.-J. 1989. Hog cholera virus: characterization of specific antiserum and identification of cDNA clones. Virology 171:18-27.
Rümenapf, T., Stark, R., Meyers, R. G. and Thiel, H.-J. 1991. Structure proteins of hog cholera virus expressed by vaccinia virus: further characterization and induction of protective immunity. J. Virol. 65:589-597.
Rümenapf, T., Stark, R., Heimann, M., and Thiel, H.-J. 1998. N-terminal protease of pestiviruses: identification of putative catalytic residues by site-directed mutagenesis. J. Virol. 72:2544-2547.
Rümenapf, T., Unger, G., Strauss, R. and Thiel, H.-J. 1993. Processing of the envelope glycoproteins of pestiviruses. J. Virol. 67:3288-3294.
Sakoda, Y., Fukusho, A. 1998. Establishment and characterization of a porcine kidney cell line, FS-L3, which forms unique multicellular domes in serum-free culture. In Vitro Cell Dev. Biol. Anim. 34(1):53-7.
Sakoda, Y., Yamaguchi, O., Fukusho, A. 1998. A new assay for classical swine fever virus based on cytopathogenicity in porcine kidney cell line FS-L3. J. Virol. Methods 70(1):93-101
Schneider, R., Unger, G., Stark, R., Schneider-Scherzer, E. and Thiel, H.-J. 1993. Identification of a structural glycoprotein of a RNA as a ribonuclease. Science 261:1169-1171.
Shimizu, M., Yamada, S., Nishimori, T. 1995. Cytocidal infection of hog cholera virus in porcine bone marrow stroma cell cultures. Vet. Microbiol. 47(3-4):395-400.
Sizova, D.V., Kolupaeva, V.G., Pestova, T.V., Shatsky, I.N., Hellen, C.U. 1998. Specific interaction of eukaryotic translation initiation factor 3 with the 5'' nontranslated regions of hepatitis C virus and classical swine fever virus RNAs. J. Virol. 72(6):4775-82.
Stark, R., Rümenapf, T., Meyers, G. and Thiel, H.-J. 1990. Genomic location of hog cholera virus glycoproteins. Virology 174:286-289.
Solorzano, R. F., Thigpen, J. E., Bedell, D. M., Schwartz, W. L. 1966. The diagnosis of hog cholera by a fluorescent antibody test. J. Am. Vet. Med. Assoc. 149(1):31-4
Susa, M., Konig, M., Saalmuller, A., Reddehase, M.J., Thiel, H.J. 1992. Pathogenesis of classical swine fever: B-lymphocyte deficiency caused by hog cholera virus. J. Virol .66(2):1171-1175.
Tautz, N., K. Elbers, D. Stoll, G. Meyers, and H.-J. Thiel. 1997. Serine protease of pestiviruses: Determination of cleavage sites. J. Virol. 71:5415-5422.
Thiel, H.-J., Stark, R., Weiland, E., Rümenapf, T. and Meyers, G. 1991. Hog cholera virus: molecular composition of virions from a pestovirus. J. Virol. 65:4705-4712.
Tillmann, R., Robert, S., Gregor, M. and Heinz-Jurgen, T. 1991. Structural proteins of hog vholera virus expresses by vaccina virus: futher characterization and induction of protective infections. J. Virol. 65:589-597.
van Oirschot, J. T. 1988. Description of the virus infection, in Classical swine fever and related viral infection, B. Liess (ed.), Martinus Nijhoff Publishing, Boston, Usa, pp, 1-25.
van Rijn, P. A., van Gennip, H. G., de Meijer, E. J. and Moormann, R. J. M. 1993. Epitope mapping of envelope glycoprotein E1 of hog cholera virus strain Brescia. J. Gen. Virol. 74:2053-2060.
van Rijn, P. A., Bossers, A., Wensvoort, G., Moormann, R. J. M., 1996. Classical swine fever virus (CSFV) envelope glycoprotein E2 containing one structural antigenic unit protects pigs from lethal CSFV challenge. J. Gen. Virol. 77: 2737-2745.
van Rijn, P. A., van Gennip, H. G. P., Moormann, R. J. M. 1999. An experimental marker vaccine and accompanying serological diagnostic test both based on envelope glycoprotein E2 of classical swine fever virus (CSFV). Vaccine 17:433-440.
Vilcek, S., Belak, S. 1997. Organization and diversity of the 3''-noncoding region of classical swine fever virus genome. Virus Genes 15(2):181-6.
Vilcek, S., Paton, D., Lowings, P., Bjorklund, H., Nettelton, P., Belak, S. 1999. Genetic analysis of pestiviruses at the 3’ end of the genome. Virus Genes 18(2):107-14.
Wang, S. and Hazelrigg, T., 1994. Implications for bcd mRNA localization from spatial distribution of exu protein in Drosophila oogenesis. Nature 369: 400-03.
Ward, W., Prentice, H., Roth, A., Cody, C. and Reeves, S., 1982. Spectral perturbations of the Aequoria green fluorescent protein. Photochem. Photobiol. 35: 803-808.
Weiland, E., Ahl, R., Stark, R., Weiland, F. and Thiel. H.-J. 1992. A second envelope glycoprotein mediate neutralization of a pestivirus, hog cholera virus. J. Virol. 66:3677-3682.
Weiland, E., Stark, R., Haas, B., Rümenapf, T., Meyers, G. and Thiel, H.-J. 1990. Pestivirus glycoprotein which induces neutrolization antibodies forms part of a disulfide-linkers heterodimer. J. Virol. 64:3563-3569.
Wensvoort, G., Boonstra, J. and Bodzinga, B. G. 1990. Immunoaffinty purification and characterization of the envelope protein E1 of hog cholera virus. J. Gen. Virol. 71:531-540.
Widjojoatmodjo, M. N., van Gennip, H. G. P. A., Bouma, van Rijn, P. A. and Moormann, R. J. M. 2000. Classical swine fever virus Erns deletion mutants: trans-complementation and potential use as nontransmissible, modified, live-attenuated marker vaccines. J. Virol.74:2973-2980.
Yang, F., Moss, L. G. and Phillips, G. N. Jr. (1996) The Molecular Structure of Green Fluorescent Protein. Nature Biotechnology 14:1246-1251.
Youvan, D. C., Michel-Beyerle, M. E. 1996. Structure and fluorescence mechanism of GFP. Nature Biotechnology 14:1219-1220
Yu, H., Grassmann, C. W., Behrens, S. E. 1999. Sequence and Structural Elements at the 39 Terminus of Bovine Viral Diarrhea Virus Genomic RNA: Functional Role during RNA Replication. J. Virol. 73:3638-48.
Yu, M., Wang, L.F., Shiell, B. J., Morrissy, C. J., and Westbury, H. A. 1996. Fine mapping of C-terminal linear epitope highly conserved among the major envelope glycoprotein E2 (gp51 to 54) of difference pestiviruses. Virology 222:298-292.
Zijl, M. V., Wensvoort, G., de kluyver, E., Hulst, M., van Gulden, H.Gielken, A., Berns, A. and Moormann, R. 1991. Live attenuated pseudorabies virus expressing envelope glycoprotein E1 of hog cholera virus protects swine against both pseudorabies and hog cholera. J. Virol. 65:2761-2765.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top