(3.235.245.219) 您好!臺灣時間:2021/05/07 21:09
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:李明輝
研究生(外文):Li. Ming Hui
論文名稱:新型多穩態光開關之優化設計與製作研究
論文名稱(外文):Design and Optimization of a Novel Multi-Stable Optical Switch
指導教授:洪瑞華
指導教授(外文):Horng Ray Hwa
學位類別:碩士
校院名稱:國立中興大學
系所名稱:精密工程研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2001
畢業學年度:89
語文別:中文
論文頁數:80
中文關鍵詞:光通訊光開關平面光路技術火焰水解沈積
外文關鍵詞:Optical CommunicationOptical SwitchPlanar Lightwave CircuitFlame Hydrolysis Deposition
相關次數:
  • 被引用被引用:0
  • 點閱點閱:100
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
光通訊發展至今,運用高密度分波多工技術來倍增頻寬已成為主流,因此用於光域上做交換核心的光開關,在未來勢必扮演更重要的角色。本論文就已商品化的產品和已發表的製程來介紹各類型之光開關,並提出一種新式波導型積體光開關之設計方法,此新式波導型光開關係以BPM_CAD光學軟體模擬光波導之光路結構,並經由Ansys工程分析軟體模擬致動器之結構變形量而設計出新式波導型之積體光路開關。由於新型光開關光路結構的特殊設計,光路可以維持在切換後的通道上而不需再提供外力以確保其穩定之狀態,同時此新型光開關整合了切換光路之對準機構及與光纖連接之V形槽於光波導結構上,使得光開關的封裝趨向簡單化。應用該設計來完成光路切換,經模擬數據顯示可大幅減低切換光路所需之橫向位移與有效提升熱致動器之驅動效益,而圓弧狀凹槽結構的設計則可有效降低插入損失和提供精確之光路對準。因此預期將可製造低切換功率、低傳導損耗、批次化低成本、耐久高穩定性、高切換速度和多波道開關數之光開關。根據所得模擬數據顯示,1 × 5光開關之元件長度可控制在2.5 × 0.5 cm2,切換之插入損失小於0.5 dB,切換時間快於100 ms,切換功率可低於150 mW。
目前實驗已完成火焰水解沈積矽石波導層,於4吋之矽晶片上已可製作厚度均勻度3%,折射率均勻度0.1%之石英玻璃膜。爾後再配合致動器之製程整合,經由光損耗與致動器所提供位移量的量測,即可驗證元件之特性,針對可以改善之缺失進行優化設計並完成光纖被動對準構裝,即可達成元件製作之目標。

Dense wavelength-division-multiplexing (DWDM) technology has been applied to increase the transmitting capacity in recent years. In DWDM system, the optical switch is a key component and will play an important role in future optical communication. Different types of optical switch have been studied previously. In this thesis, a novel multi-stable moving-waveguide optical switch based on micromachining combined with thermal actuators is also proposed. The optical switching and fiber attachment will be integrated in one single waveguide chip. Low insertion loss, precision optical channel attachment and no additional load should be afforded when the optical channel is switched to the stable state. This can be achieved by means of a novel structure design and latch-notch operation. The characteristics of low switching power, low transmitting loss, low cost, batch fabrication, high switching speed, multi-channel switching and long-term stability can be expected. The simulation data show that the 1´5 optical switch in the dimension of 2.5 ´ 0.5 cm2 can be accomplished. It exhibits an insertion loss less than 0.5 dB and a switching power less than 150 mW is required during the bistable switching operation.
Our newly developed flame-hydrolysis-deposition reactor demonstrates the successful fabrication of silica optical waveguide. Experiment results show that high uniformity of thickness and refractive index can be achieved within 3% and 0.1%, respectively. Once the fabrication process of the thermal actuator is completed, the measurement of this optical switch can be proceeded. The device characteristics can be verified by the insertion loss and lateral displacement. Some design concept should be modified in order to obtain passive fiber-attachment package. The expected target to fabricate this multi-stable micromachining optical switch can be achieved under the future continuous effort and research.

目錄
封面內頁
簽名頁
授權書iii
中文摘要v
英文摘要vii
誌謝ix
目錄x
表目錄xii
圖目錄xiii
第一章 緒論1
第二章 理論背景與相關研究4
2.1 光開關簡介4
2.2 機械式光開關5
2.3 雙穩態微加工型光開關5
2.4 微機電式Mirror型光開關7
2.5 平面光波導路型光開關8
2.5.1 移動波導式光開關8
2.5.2 非移動波導式光開關8
第三章 元件設計與模擬11
3.1 設計概念11
3.1.1 光路切換原理11
3.1.2 模擬方法12
3.1.2.1 BPM_CAD軟體模擬分析12
3.1.2.2 Ansys軟體模擬分析13
3.2元件之設計改良流程15.
3.2.1 新型多穩態積體光開關設計I15
3.2.2 新型多穩態積體光開關設計II16
3.2.3 新型多穩態積體光開關設計III16
3.4 光波導結構設計17
3.4.1 光插入損失之模擬分析17
3.5 熱激發式致動器之模擬分析18
3.6 提供功率與致動器溫度之關係19
3.7 製程設計與進行步驟19
3.8 光罩設計20
第四章 實驗結果與量測21
4.1 火焰水解沈積技術21
4.1.1 平面光波導製作流程24
4.1.2 沈積組成分析24
4.1.2.1 能量散佈光譜儀24
4.1.2.2 厚度與折射率量測25
4.1.2.2.1 鑽孔式膜厚計25
4.1.2.2.2 稜鏡耦合儀25
4.3 光波導光路製作26
第五章 結論27
參考文獻30
表目錄
表(一) 光通訊零組件分類表34
表(二) 光波導之摻雜氧化物特性35
表(三) 致動器相關材料特性表36
圖目錄
圖(一) 光纖通訊基本架構與元件37
圖(二) 雙穩態矽微加工光纖開關38
圖(三) 微機電式(Mirror)型光開關39
圖(四) 移動波導式光開關40
圖(五) Bubble型光開關A41
圖(六) Bubble型光開關B42
圖(七) 新型多穩態積體光開關之光路切換流程43
圖(八) 光路切換之凹槽-卡拴結構設計44
圖(九) 熱激發式致動器之橫向位移圖45
圖(十) 熱激發式致動器之垂直位移圖46
圖(十一) 新型多穩態積體光開關設計I47
圖(十二) Ansys軟體模擬致動器垂直位移之結果48
圖(十三) 不同致動器長度之垂直位移量與溫度之關係49
圖(十四) 新型多穩態積體光開關設計II50
圖(十五) 加熱器於不同材料之橫向位移量比較圖51
圖(十六) 不同厚度矽基板之加熱器長度與
橫向位移量比較圖52
圖(十七) 新型多穩態積體光開關設計III53
圖(十八) BPM_CAD 3D之光波導佈局圖54
圖(十九) 光波導彎曲角度與插入損失比較圖55
圖(二十) BPM_CAD 3D 輸出功率圖56
圖(二十一)BPM_3D光場、折射率分佈及
輸出電場強度圖57
圖(二十二)光波導披覆層厚度與光輻射損失58
圖(二十三)光波導之結構幾何尺寸圖59
圖(二十四)V形槽尺寸設計圖60
圖(二十五)熱致動器橫向位移量推導與模擬比較圖61
圖(二十六)熱致動器橫向位移量與溫度之模擬結果II62
圖(二十七)熱致動器橫向位移量與溫度之模擬結果III63
圖(二十八)熱致動器橫向位移量與溫度之模擬結果IV64
圖(二十九)熱致動器橫向位移量與溫度之模擬結果V65
圖(三十) 熱致動器垂直位移量與溫度之模擬結果66
圖(三十一)熱致動器橫向位移之應力分佈圖67
圖(三十二)橫向位移致動器提供功率與溫度之關係68
圖(三十三)垂直位移致動器提供功率與溫度之關係69
圖(三十四)新型多穩態光開關之製作流程70
圖(三十五)新型多穩態光開關MASK設計71
圖(三十六)火焰水解沉積系統72
圖(三十七)沉積裝置示意圖73
圖(三十八)多孔質玻璃素體固化前後比較圖74
圖(三十九)摻雜原料對矽石玻璃折射係數之影響75
圖(四十) 光波導之製作流程76
圖(四十一)EDS量測輸出圖77
圖(四十二)矽石玻璃膜剖面SEM圖78
圖(四十三)鑽孔式膜厚計量測方法示意圖79
圖(四十四)稜鏡耦合儀量測示意圖與量測結果輸出圖80

[1] M. S. Borella, J. P. Jue, D. Banerjee, B. Ramamurthy, B. Mukherjee, “Optical Components for WDM Lightwave Networks,” Proc. IEEE, 85, pp. 1274-1307, 1997
[2] W. Gao, “Optoelectronic components for WDM fiber optic com- munication systems and networks,” APCC/OECC. Fifth Asia-Pacific Conf. 2, pp. 1550 —1553, 1999
[3] B. Villeneuve, H. B. Kim, M. Cyr and D. Gariepy, “ WDM Compo- nent Technology, ” IEEE/LEOS Summer Topical Meeting WD2, pp. 19-20, 1997
[4] J. J. Pan, “Advanced Fiber Optic Components for DWDM Communications,” Digest LEOS Summer Topical Meetings, pp. 115-116, 1999
[5] P. Kaiser, “Key optoelectronic components for optical networks,” Digest LEOS Summer Topical Meetings, pp. 3-4, 1999
[6] F. Callegati, C. Raffaelli, ” End to end performance of an optical transparent packet network,” IEEE International Conf. 1, pp. 508 —513, 1998
[7] A. Himeno, K. Kato, T. Miya, “Silica-based planar lightwave circuits,” IEEE, Selected Topics in Quantum Electronics, 4, pp. 913 —924, 1998
[8] A. Kilian, J. Kirchhof, B. Kuhlow, G. Przyrembel, W. Wischmann, “Birefringence free planar optical waveguide made by flame hydrolysis deposition through tailoring of the overcladding,” J. Lighwave tech. pp. 193-198, 2001
[9] M. Okuno, “Recent progress on silica-based planar lightwave circuit technology, ” Lasers and Electro-Optics, 3, pp.583 —584, 1999
[10] K. Kato, Y. Tohmori, “PLC hybrid integration technology and its application to photonic components,” Selected Topics in Quantum Electronics, IEEE. 6, pp. 4 —13, 2000
[11] L.A. Field, D.L. Burriesci, P.R. Robrish, R.C. Ruby, “Micromecha- nical 1×2 optical fiber switch,” Sensors & Actuators A 53, pp. 311-315, 1996
[12] M. Hoffmann, P. Kopka, T. Groβ, E. Voges, “All-silicon bistable micromechanical fiber switch based on advanced bulk micromachining,” Selected Topics in Quantum Electronics, IEEE. 5, pp. 46-51, 1999
[13] S. S. Lee, L. S. Huang, C. J. Kim, M. C. Wu, “Freeapace fiber-optic switches based on MEMS vertical torsion mirrors,” J. Lighwave tech. 17, pp. 7-13, 1999
[14] L. Y. Lin, E. L. Goldstein, “MEMS for free-space optical switching,” LEOS '99. IEEE Lasers and Electro-Optics Society 1999 12th Annual Meeting, 2, pp. 483-484, 1999
[15] L. Y. Lin, E. L. Goldstein, “Micro-electro-mechanical systems (MEMS) for WDM optical-crossconnect networks,” Military Communications Conf. Proce. MILCOM 1999. IEEE, 2, pp. 954 -957, 1999
[16] O. B. Spahn, C. Tigges, R. Shul, S. Rodgers, M. Polosky, ”High optical power handling of pop-up microelectromechanical mirrors,” Optical MEMS, 2000 IEEE/LEOS International Conf. pp. 51 —52, 2000
[17] M. C. Wu, “An overview of micromachining for optical communi- cations, ” Optical Fiber Communication. OFC 97, Conf. pp. 112 —113, 1997
[18] E. Ollier, P. Labeye, F. Revol, “A micro-opto-mechanical switch integrated on silicon for optical fiber network,” IEEE/LEOS 1996 Summer Topical Meetings, pp. 71 —72, 1996
[19] E. Ollier, P. Labeye, F. Revol, “Micro-opto mechanical switch integrated on silicon,” Electron. Lett. 31, pp. 2003-2005, 1995
[20] I. Shubin, P. Likamwa, “A guided-wave optical switch controlled by a micro electro mechanical cantilever,” Lasers and Electro-Optics Society 2000 Annual Meeting, IEEE, 1, pp. 50 -51, 2000
[21] J. E. Fouquet, S. Venkatesh, M. Troll, D. Chen,H. F. Wong, P. W. Barth, “A compact, scalable cross-connect switch using total internal reflection due to thermally generated bubbles” Lasers and Electro-Optics Society 1998 Annual Meeting, IEEE, 2, pp. 169 —170, 1998
[22] M. Makihara, “Microelectromechanical intersecting waveguide optical switch based on thermo-capillarity,” Optical MEMS, 2000 IEEE/LEOS International Conf. pp. 33 —34, 2000
[23] M. Makihara, N. Sato, F. Shimokawa, Y. Nishida, “Micromechanical optical switches based on thermo capillary integrated in waveguide substrate,” J. Lightwave Tech. 17, pp. 14 —18, 1999
[24] C. S. Pan, W. Hsu, “An electro-thermally and laterally driven polysilicon microactuator,” J. Micromech, Microeng. 7,1997
[25] W. Fang, J. A. Wickert, “Post buckling of micromachined beams, “ J, Micromech, Microeng. 4, pp. 116-122, 1994
[26] W. Riethmuller and W. Benecke, “Thermally excited silicon microactuators,” IEEE Trans. Electron. Devices, 35, pp. 758-762, 1988
[27] L. Lin, S. H. Lin, “Vertically driven microactuators by electro- thermal buckling effects,” Sensors and Actuator A 71, pp. 35-39, 1998
[28] S. Timoshenko, Strength of Materials, Part I. New York: Van Nostrand, 1947.
[29] J. H. Fampel, F. E. Fisher, Engineering Design, New York: Wiely, 1981.
[30] D. B. Keck and P.C. Schultz, “Planar optical waveguide,” US Patent 3,806,223, 1974.
[31] D. B. Keck and P. C. Schultz, “Method of forming planar optical waveguide,” US Patent 3,934,061, 1976.
[32] T. Izawa and S. Sudo, “Optical fibers: materials and fabrication,” KTK Sci. Publishers, Tokyo, 1987.
[33] T. Izawa, “Early days of VAD process,” Selected Topics in Quantum Electronics, 6, pp. 1220-1227, 2000.
[34] K. Petersen, “Silicon as a mechanical material,” Proc. IEEE, 70, pp. 420-457, 1982.
[35] M. Abe, T. Kitagawa, K. Hattori, A. Himeno, Y. Ohmori, “Electro-optic switch constructed with a pole silica-based waveguide on a si substrate,” Electron. Lett. 32, pp. 893-894, 1996
[36] K. Sate, M. Horino,T. Akashi,N. Komatsu, D. Kobayashi, “Mechanical Optical Switch Of A Plane Type With Electro- magnetic Actuators,” Lasers and Electro-Optics, Pacific Rim Conf. pp. 201 —202, 1997
[37] I. Shubin, P. L. K. Wa, “Electrostatically actuated 1/spl times/2 micromechanical optic switch,” Electron. Lett. 37, pp. 451-452, 2001

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔