跳到主要內容

臺灣博碩士論文加值系統

(34.204.176.71) 您好!臺灣時間:2024/11/07 17:58
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:許喬筑
研究生(外文):Chiao-Chu Hsu
論文名稱:單相與兩相混合層紊流場中流體Lagrangian時間尺度之預測
論文名稱(外文):Prediction of Lagrangian Time Scales for Carrier Phase in Single-Phase and Droplet-Loading Two-Phase Mixing Layers
指導教授:張克勤張克勤引用關係
指導教授(外文):Keh-Chin Chang
學位類別:碩士
校院名稱:國立成功大學
系所名稱:航空太空工程學系
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2001
畢業學年度:89
語文別:中文
論文頁數:67
中文關鍵詞:Lagrangian時間尺度混合層
外文關鍵詞:Lagrangian time scalemixing layer
相關次數:
  • 被引用被引用:0
  • 點閱點閱:236
  • 評分評分:
  • 下載下載:7
  • 收藏至我的研究室書目清單書目收藏:1
由於在計算兩相紊流場的粒子擴散效應時,必須先求解粒子軌跡散佈之變化量,在這求解過程中需要知道顆粒的Lagrangian自相關函數。但因為有關於這方面的文獻資料十分匱乏,一般學者皆以連續相相關性來代替。是否能以單相流場中之連續相相關性來代表兩相流之連續相相關性,仍是一個尚待確認的問題。
本文利用根據單相流及稀薄兩相流實驗數據整理得到的Eulerian積分時間尺度與流場模擬的數值結果,希望能了解單相及兩相紊流場中Lagrangian與Eulerian積分時間尺度之間的關係及流體Lagrangian積分時間尺度。當在流場中有顆粒的負載時,會改變整個流場的結構,所以並不能用單相流中氣體的行為來代表兩相流連續相的行為。但由於所模擬案例受制於其量測儀器中儲存數據資料的限制,所以本論文中所求得關於兩相流之連續相相關性仍須以更具統計效果的實驗來驗證。

Turbulent dispersion of the dispersed-phase elements in two-phase flows can be performed by probabilistic computation of the particle’s spatial distribution. It requires Lagrangian autocorrelation function of particle,RLpi , to quantify the trajectory variance of particle. However, experimental data on the Lagrangian velocity autocorrelation of particles is too almost nonexistent. It is questionable whether or not the of the carrier fluid in two-phase flow could be represented by those obtained from the single-phase flow.
The Eulerian fluid velocity correlations in the single-phase and two-phase mixing layer flows are calculated from the raw data of the velocity measurements made in the experimental work of Wang and coworkers. Based on the simulation results and the experimental data, the relationship between Lagrangian and Eulerian integral time scales can be obtained. It is found that the Lagrangian time scale of the carrier phase in the two-phase case is different from that in the single-phase due to the change of the turbulence structure through the existence of the dispersed-phase elements.
1.1 前言 1
1.2 文獻回顧 3
1.3 研究目標 7
第二章 理論模式與數值方法 8
2.1 probabilistic Lagrangian method與實驗數據的整理 8
2.2 自相關函數與時間積分尺度 12
2.3 實驗設備 16
2.4 物理模式 18
2.4.1 連續相方程式 18
2.4.2 分散相方程式 18
2.5 數值方法 19
2.5.1 邊界條件 19
2.5.2 求解程序 20
第三章 結果與討論 22
3.1 數值模擬結果 22
3.2 常數C3的範圍分布 23
3.2.1 單相流 24
3.2.2 兩相流之連續相 24
3.3 顆粒的Stokes number 25
3.4 Lagrangian時間尺度之預測 28
第四章 結論與建議 30
參考文獻 32

Adeniji-Fashola, A., and Chen, C. P., Modeling of confined turbulent fluid-particle flows using Eulerian and Lagrangian schemes, Int. J. Heat Mass Transfer 33, pp.691-701, 1990
Chang, K. C., Wang, M. R., Wu, W. J., and Liu, Y. C., Theoretical and experimental study on two-phase structure of planar mixing layer, AIAA Journal 31, pp.68-74, 1993
Chang, K. C., and Wu, W. J., Sensitivity study on Monte Carlo solution procedure of two-phase turbulent flow, Numerical Heat Transfer 25B, pp.223-244, 1994
Chang, K. C., and Yang, J.C., Unsteady drag consideration in stochastic Eulerian-Lagrangian formulation of two-phase flow, AIAA Journal 37, pp.434-442, 1999
Chen, X. Q., and Pereira, J. C. F., Prediction of Evaporating Spray in Anisotropically Turbulent Gas Flow, Numerical Heat Transfer 27A, pp.143-162, 1995
Chen, X. Q., and Pereira, J. C. F., Stochastic-probabilistic efficiency enhanced dispersion modeling of turbulent polydispersed sprays, Journal of Propulsion and Power 12, pp.760-769, 1996
Chen, X. Q., and Pereira, J. C. F., Efficient computation of particle dispersion in turbulent flows with a stochastic-probabilistic model, Internal Journal of Mass Transfer 40, pp.1727-1741, 1997
Clift, R., Grace J. R., and Weber, M. E., Bubbles, Drops and Particles, Academic Press, New York, 1978
Corrsin, S., Estimation of the relation between Eulerian and Lagrangian scales in large Reynolds numbers turbulence, Journal of Atmospheric Science 20, pp.115-119, 1963
Crowe, C. T., Sharma, M. P., and Stock, D. E., The particle-source-in-cell model for gas-droplet flows, Trans. ASME Journal of Fluid Engineering 99, pp.325-332, 1977
Elghobashi, S. E., On predicting particle-laden turbulence model for two-phase flows, Applied Scientific Research 52, pp.309-329, 1994
Gifford, F. A., Jr., A simultaneous Lagrangian-Eulerian turbulence experiment, Monthly Weather Review 83, pp.293-301, 1955
Hanna, R.S., Lagrangian and Eulerian time-scale relations in the daytime boundary layer, Journal of Applied Meteorolopy 20, pp.242-249, 1981
Hay, J. S., and Pasquill, F., Diffusion from a continuous source in relation to the spectrum and scale of turbulence, Advances in Geophysics 6, pp.345-365, 1959
Hinze, J.O., Turbulence, McGraw-Hill, New York, 1975
Huang, D.Y., Phase interactions in boundary layer and mixing layer regions of two-phase turbulent flow, Ph. D. Thesis, Institute of Aeronautics and Astronautics, National Cheng-Kung University, Tainan, Taiwan/R.O.C., 1994
Koeltzsch, K., On the relationship between the Lagrangian and Eulerian time scale, Atmospheric Environment 33, pp.117-128, 1999
Lu, Q. Q., An approach to modeling particle motion in turbulent flows- I. homogeneous, isotropic turbulence, Atmospheric Environment 29, pp.423-436, 1995
Liu, Y. C., Transition of the planar mixing layer under particle loading, Ph. D. Thesis, Institute of Aeronautics and Astronautics, National Cheng-Kung University, Tainan, Taiwan/R.O.C., 1991
Pasquill, F., and Smith, F.B., Atmospheric Diffusion, Ellis Horwood, UK, 1983
Philip, J. R., Relation between Eulerian and Lagrangian Statistics, Physics of Fluids Supplement 10, pp.S69-71, 1967
Rizk, M. A., and Elghobashi, S. E., A Two-Equation Turbulence Model for Dispersed Dilute Confined Two-Phase Flows, Int. J. of Multiphase Flow 15, pp.119-133, 1989
Saffman, P. G., An approximate calculation of the Lagrangian auto-correlation coefficient for stationary homogeneous turbulence, Applied Scientific Research 11A, pp.245-255, 1962
Sato, Y., and Yamamoto, K., Lagrangian measurement of fluid-particle motion in an isotropic turbulent field, Journal of Fluid Mechanics 175, pp.183-199, 1987
Snyder, W. H., and Lumley, J. L., Some measurements of particle velocity auto-correlation functions in a turbulent flow, Journal of Fluid Mechanics 48, pp.41-71, 1971
Yang, J. C., Re-examination of the stochastic Eulerian-Lagrangian method for two-phase turbulent flow, Ph. D. Thesis, Institute of Aeronautics and Astronautics, National Cheng-Kung University, Tainan, Taiwan/R.O.C., 2000
Wu, W. J., A parametric study of Monte-Carlo method capable of predicting two-phase turbulent flows, Ph. D. Thesis, Institute of Aeronautics and Astronautics, National Cheng-Kung University, Tainan, Taiwan/R.O.C., 1992
黃裕峰, 兩相混合層紊流場中連續與分散相相關性之探究, 國立成功大學航空太空工程研究所碩士論文, 民國八十九年

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top