跳到主要內容

臺灣博碩士論文加值系統

(44.200.82.149) 您好!臺灣時間:2023/06/02 17:59
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:侯川嵩
研究生(外文):Chuan-Song Hou
論文名稱:準分子雷射之聚合物燒蝕:脈衝能量量測與煙柱衰減效應
論文名稱(外文):Excimer Laser Ablation of Polymers: Pulse Energy Measurement and Plume Attenuation Effects
指導教授:吳志陽
指導教授(外文):C. Y. Wu
學位類別:碩士
校院名稱:國立成功大學
系所名稱:機械工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2001
畢業學年度:89
語文別:中文
論文頁數:85
中文關鍵詞:準分子雷射燒蝕
外文關鍵詞:Excimer LaserAblation
相關次數:
  • 被引用被引用:1
  • 點閱點閱:149
  • 評分評分:
  • 下載下載:18
  • 收藏至我的研究室書目清單書目收藏:0
本研究首先利用光電倍增管和示波器量得準分子雷射的脈衝能量隨時間的分佈,並以發色基濃度的速率方程式,結合能量方程式以及輻射在介質中的傳遞和煙柱衰減效應的影響等,來預測準分子雷射對PMMA的刻除率,並同時求得臨界能量密度,以做為將來加工時所需最低能量的參考。此預測的刻除率將和實驗所得的刻除率比較。基於這些結果,本文探討光束大小、空氣噴流、能量密度等加工參數對多分子材料刻除率的影響。
In this work, we use photomultiplier and oscilloscope to measure temporal distribution of the pulse energy of the excimer laser. Then, we combine the rate equation of the concentration of chromophores, the energy equation, the transfer of radiation in material and the plume attenuation effects to predict the etching rate of PMMA by excimer laser. The predicted results are compared with the measurement results. Based on those results, the effects of machining parameters, including beam size, purge air and energy fluence, on the etching rate of polymers are studied.
目錄
中文摘要…………………………………………………………………….Ⅰ
英文摘要…………………………………………………………………….Ⅱ
誌謝………………………………………………………………………….Ⅲ
目錄………………………………………………………………………….Ⅳ
表目錄…………………………………………………………………….…Ⅵ
圖目錄……………………………………………………………………….Ⅶ
符號說明……………………………………………………………………Ⅹ
第一章緒論………………………………………………………………..1
第二章實驗量測………………………………………………………….4
2-1 雷射脈衝能量的量測…………………………………………….4
2-2 刻除率的量測…………………………………………………….6
2-3 煙柱衰減率的量測……………………………………………….7
第三章預測模式與數值方法……………………………………………10
3-1 預測模式………………………………………………………..10
3-2 數值方法………………………………………………………..17
第四章結果與討論……………………………………………………….21
4-1 已知未經煙柱衰減光子通量的結果與討論……………………21
4-2 已知經煙柱衰減後的光子通量的結果與討論…………………24
第五章結論與展望………………………………..……………………..26
5-1 結論………………………………………………………………26
5-2 展望………………………………………………………………26
參考文獻……………………………………………………………………28
自述…………………………………………………………………………71
表目錄
表4-1PMMA的吸收係數………………………………………………48
表4-2計算用的物理及化學性質[28]…………………………….…….49
圖目錄
圖2-1PS-2000型KrF Excimer Laser的整體構造圖………………….35
圖2-2PS-2000型KrF Excimer Laser的整體示意圖………………….36
圖2-3雷射脈衝能量量測的實驗裝置示意圖……………..………….37
圖2-4在15倍鏡和5倍鏡下能量計所量得的不同能量密度對衰減器角度的關係圖……………………………………..……………….38
圖2-5未經轉換的〝電壓-時間〞的脈衝能量圖型……………………39
圖2-6經過轉換後的〝光子通量-時間〞的脈衝能量圖型……….….40
圖2-7煙柱衰減率量測的實驗裝置示意圖…………………………….41
圖3-1二能階系統輻射過程……………………………………………42
圖3-2三能階系統輻射過程………………….………………………..43
圖3-3座標示意圖………………………………………………………44
圖3-4崩壞材料擴散模式中使用的幾何參數(右半);崩壞材料對入射光束的影響示意圖(左半)…………………………………….45
圖3-5(a)程式計算流程圖………………………………………………….46
圖3-5(b)程式計算流程圖…………………………………………….……47
圖4-1在不同的雷射能量密度下,照射在材料固體表面無因次的光子通量的時間分佈圖(tp=30 ns)……………………………….…50
圖4-2雷射光點半徑為50 μm、75 μm、145 μm、188 μm、200 μm時 刻除率的理論預測結果,符號點為10個脈衝的實驗結果的平均值,線段部分為為理論預測結果……………………………….51
圖4-3雷射光點大小為50μm時,不同大小空間格點的比較………52
圖4-4 雷射光點大小為50μm時,不同大小時間格點的比較………53
圖4-5 在不同的雷射能量密度下,刻除深度隨時間變化的關係圖….54
圖4-6 在不同的雷射能量密度下,材料表面溫度的時間分佈圖…….55
圖4-7 在不同的雷射能量密度下,材料在脈衝結束時位於基態無因次的發色基濃度的空間分佈圖…………………………………….56
圖4-8 在不同的雷射能量密度下,材料在脈衝結束時位於激發態無因次的發色基濃度的空間分佈圖………………………………….57
圖4-9在不同的雷射能量密度下,z方向脈衝結束時無因次的材料溫度的空間分佈圖…………………………………………………….58
圖4-10在有空氣噴流的情況下,孔徑與空氣噴流對刻除深度的影響,符號點為10個脈衝的實驗結果的平均值,線段部分為曲線擬合的結果…………………………………………………………….59
圖4-11在無空氣噴流的情況下,孔徑與空氣噴流對刻除深度的影響,符號點為10個脈衝的實驗結果的平均值,線段部分為曲線擬合的結果…………………………………………………………….60
圖4-12在相同雷射光點大小下,有空氣噴流和無空氣噴流對刻除深度的影響…………………………………………………………….61
圖4-13當入射的雷射光能量密度小於臨界能量密度Fth時,所造成的孵化現象……………………….……………………………………62
圖4-14雷射光點大小在50μm、75μm、145μm、188μm、200μm於不同能量密度下所量得的刻除深度結果…………………………….63
圖4-15在不同的雷射能量密度下,照射在材料固體表面無因次的光子通量的時間分佈圖……………………………………………….64
圖4-16實驗值和預測值在不同能量密度下刻除率的比較,符號部份為實驗值和預測值,而線段部份為曲線擬合的結果…………….65
圖4-17在不同的雷射能量密度下,刻除深度隨時間變化的關係圖….66
圖4-18在不同的雷射能量密度下,材料表面溫度的時間分佈圖…….67
圖4-19在不同的雷射能量密度下,材料在脈衝結束時位於基態無因次的發色基濃度的空間分佈圖…………………………………….68
圖4-20在不同的雷射能量密度下,材料在脈衝結束時位於激發態無因次的發色基濃度的空間分佈圖………………………………….69
圖4-21在不同的雷射能量密度下,z方向脈衝結束時無因次的材料溫度的空間分佈圖…………………………………………………….70
參考文獻
1.Brannon, James, 1997, "Excimer laser Ablation and Etching,"IEEE Cir. Dev., 13, pp. 11-18.
2.林素霞, 2000, "Investigation of Reactive Magnetron Sputtering of Alumian Films on PMMA," 國立成功大學材料科學及工程研究所碩士論文, 台南, 台灣.
3.Ihlemann, J., Scholl, A., Schmidt, H., and Wolff-Rottke, B., 1995, "Nanosecond and Femtosecond Excimer-Laser Ablation of Oxide Ceramics," Appl. Phys. A, 60, pp. 411-417.
4.Gorodetsky, G., Kazyaka, T. G., Melcher, R. L., and Srinivasan, R., 1985, "Calorimetric and Acoustic Study of Ultraviolet Laser Ablation of Polymers," Appl. Phys. Lett., 46, pp. 828-830.
5.Fukumura, H., Hamano, K., and Masuhara, H., 1993, "Time-Resolved Absorption Spectral Measurement of Polymer Films During Laser Ablation," Chem. Lett., p. 245-248.
6.Andrew, J. E., Dyer, P. E., Greenough, R. D., and Key, P. H., 1983, "Metal Film Removal and Patterning using a XeCl Laser," Appl. Phys. Lett., 43, pp. 1076-1078.
7.Hayashi, H., Miyamoto, I., 1995, "Process of Thin Cu Film Removal by KrF Excimer Laser," Proc. Laser Materials Processing Conf. ICALEO ''95, J. Mazumder et al., eds., Laser Institute of America, Orlando, 80, pp. 391-400.
8.Dou, K., Knobbe, ET., Parkhill, RL., Wang, YM., 2000, "Surface Texturing of Aluminum Alloy 2024-T3 via Femto- and Nanosecond Pulse Excimer Laser Irradiation," IEEE J. Sel. Top. Quant., 6, pp. 689-695.
9.Fushinobu, K., Kimizuka, J., Satoh, I., and Kurosaki, Y., 1996, "Heat Transfer Characteristics in Polymers with Excimer Laser Irradiation," HTD 336/FED 240, pp. 39-44.
10.Cain, Stephen R., Burns, F. C., Otis, C. E., and Braren, B., 1992, "Photothermal Description of Polymer Ablation: Absorption Behavior and Degradation Time Scales," J. Appl. Phys., 72, pp. 5172-5178.
11.Ehrlich, D. J., and Tsao, J. Y., 1983, "A Review of Laser-Microchemical Processing," J. Vac. Sci. Technol. B, 1, pp. 969-984.
12.Srinivasan, R., Braren, B., and Dreyfus, R. W., 1987, "Ultraviolet Laser Ablation of Polyimide Films," J. Appl. Phys., 61, pp. 372-376.
13.Srinivasan, R., Braren, B., Seeger, D. E., and Dreyfus, R. W., 1986, "Photochemical Cleavage of a Polymeric Solid: Details of the Ultraviolet Laser Ablation of Poly(methyl methacrylate) at 193 and 248 nm," Macromolecules, 19, pp. 916-921.
14.Lippert, T., Langford, S. C., Wokaun, A., Savas, Georgiou, and Dickinson, J. T., 1999, "Analysis of Neutral Fragments from Ultraviolet Laser Irradiation of a Photolabile Triazeno Polymer," J. Appl. Phys., 86, pp. 7116-7122.
15.Kuper, S., and Stuke, M., 1987, "Femtosecond UV Excimer Laser Ablation," Appl. Phys. B., 44, pp. 199-204.
16.Srinivasan, R., and Mayne-Banton, V., 1982, "Self-developing Photoetching of Poly(ethylene terephthalate) Films by Far-Ultraviolet Excimer Laser Radiation," Appl. Phys. Lett., 41, pp. 576-578.
17.Lippert, T., Webb, R. L., Langford, S. C., and Dickinson, J. T., 1999, "Dopant Induced Ablation of Poly(methyl methacrylate) at 308 nm," J. Appl. Phys., 85, pp. 1838-1847.
18.Cain, Stephen R., Burns, F. C., and Otis, C. E., 1992, "On Single-Photon Ultraviolet Ablation of Polymeric Materials," J. Appl. Phys., 71, pp. 4107-4117.
19.Cain, Stephen R., 1993, "A Photothermal Model for Polymer Ablation: Chemical Modification," J. Phys. Chem., 97, pp. 7572-7577.
20.Luk''yanchuk, B., Bityurin, N., Anisimov, S., and Bauerle, D., 1993, "The Role of Excited Species in UV-Laser Materials Ablation," Appl. Phys. A, 57, pp. 367-374.
21.Ihlemann, J., Wolff, B., and Simon, P., 1992, "Nanosecond and Femtosecond Excimer Laser Ablation of Fused Silica," Appl. Phys. A, 54, pp. 363-368.
22.Cole, H. S., Liu, Y. S., and Philipp, H. R., 1986, "Dependence of Photoetching Rates of Polymers at 193 nm on Optical Absorption Depth," Appl. Phys. Lett., 48, pp. 76-77.
23.Krajnovich, Douglas J., 1997, "Incubation and Photoablation of Poly(methyl methacrylate) at 248 nm. New Insight into the Reaction Mechanism using Photofragment Translational Spectroscopy," J. Phys. Chem. A, 101, pp. 2033-2039.
24.Kuper, S., and Stuke, M., 1989, "UV-Excimer-Laser Ablation of Polymethylmethacrylate at 248 nm: Characterization of Incubation Sites with Fourier Transform IR- and UV-Spectroscopy," Appl. Phys. A, 49, pp. 211-215.
25.Blanchet, GB., Cotts, P., Fincher CR., 2000, "Incubation: Subthreshold Ablation of Poly-(methyl methacrylate) and the Nature of the Decomposition Pathways," J. Appl. Phys., 88, pp. 2975-2978.
26.Wagner, F., Hoffmann*, P., 1999, "Structure Formation in Excimer Laser Ablation of Stretched Poly(ethylenetherephthalate) (PET): the Influence of scanning Ablation," Appl. Phys. A, 69, pp. 841-844.
27.D''Couto, G. C., and Babu, S. V., 1994, "Heat Transfer and Material Removal in Pulsed Excimer-Laser-Induced Ablation: Pulsewidth Dependence," J. Appl. Phys., 76, pp. 3052-3058.
28.Schmidt, H., Ihlemann, J., Wolff-Rottke, B., Luther, K., and Troe, J., 1998, "Ultraviolet Laser Ablation of Polymers: Spot Size, Pulse Duration, and Plume Attenuation Effects Explained," J. Appl. Phys., 83, pp. 5458-5468.
29.Schmidt, H., Ihlemann, J., Luther, K., and Troe, J., 1999, "Modeling of Velocity and Surface Temperature of the Moving Interface During Laser Ablation of Polyimide and Poly(methyl methacrylate)," Appl. Surf. Sci., 138, pp. 102-106.
30.劉宏德, 2000, "準分子雷射與高分子交互作用時的熱傳與材料割除,"國立成功大學機械工程學系碩士論文, 台南, 台灣.
31.Brannon, J., 1993, Excimer Laser Ablation and Etching, The education committee of American Vacuum Society, New York.
32.丁勝懋, 1998, "雷射工程導論,"第四版, 中央圖書出版社出版, 台北, 台灣.
33.Pettit, G. H., and Sauerbrey, R., 1993, "Pulsed Ultraviolet Laser Ablation," Appl. Phys. A, 56, pp. 51-63.
34.Guillet, J., 1987, Polymer Photophysics and Photochemistry, Cambridge University Press, Cambridge.
35.Ball, Z., Feurer, T., Callahan, D. L., and Sauerbrey, R., 1996, "Thermal and Mechanical Coupling between Successive Pulses in KrF-Excimer-Laser Ablation of Polyimide," Appl. Phys. A, 62, pp. 203-211.
36.Gupta, A., Liang, R., Tsay, F. D., and Moacanin, J., 1980, "Characterization of a Dissociative Excited State in the Solid State: Photochemistry of Poly(methyl methacrylate). Photochemical Processes in Polymeric Systems.," Macromolecules, 13, pp. 1696-1700.
37.M. Necati Ozisik, 1993, Heat Conduction second ed., John Wiley & Sons, New York.
38.Kawamura, Y., Toyoda, K., and Namba, S., 1982, "Effective Deep Ultraviolet Photoetching of Polymethylmethacrylate by an Excimer Laser," Appl. Phys. Lett., 40, pp. 374-375.
39.Lin, B. J., 1975, "Deep UV Lithography," J. Vac. Sci. Technol., 12, pp. 1317-1320.
40.Brandrup, J. and Immergut, E. H., 1989, Polymer Handbook 3rd ed., John Wiley & Sons, New York.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top