(3.234.244.18) 您好!臺灣時間:2020/04/06 11:02
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
本論文永久網址: 
line
研究生:郭士豪
論文名稱:準分子雷射與微型聲波感測器之製作、測試與應用
論文名稱(外文):Excimer Laser and Miniature Acoustic Sensors: Fabrication, Evaluation and Applications
指導教授:李 永 春
指導教授(外文):Yung-Chun Lee
學位類別:碩士
校院名稱:國立成功大學
系所名稱:機械工程學系
學門:工程學門
學類:電資工程學類
論文出版年:2001
畢業學年度:89
語文別:中文
中文關鍵詞:準分子雷射微細加工立體微結構圓錐探頭等向性材料表面波波速非等向性材料表面波波速裂縫量測應力量測
外文關鍵詞:Excimer LaserMicro-machining3D MicrostructureConical TransducerSurface wave measurementSurface-Breaking Cracks MeasurementStress MeasurementAcoustoelastic
相關次數:
  • 被引用被引用:1
  • 點閱點閱:581
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:46
  • 收藏至我的研究室書目清單書目收藏:0
摘要
準分子雷射微細加工是屬於LIGA-like製程中的一種,它是利用脈衝式的深紫外雷射光(Deep UV Light),配合光罩的使用,以打斷分子鍵,瞬間熱吸收與熱膨脹的方式加工,去除工件表面某一特定區域內之表層材料,而達到微細加工的目的。
錐形聲波感測器,是美國國家標準局(National Bureau of Standards, 現為National Institute for Standards and Technology)於1980年代所發展及標準化的寬頻聲波量測探頭。其構造為一圓錐形壓電元件,在圓錐的頂尖端及其寬底端塗佈電極,頂尖端與待測試件接觸,寬底端與一圓柱銅塊接著。此圓錐可將聲波在其頂尖端處所造成的垂直平面方向振動,轉換成等比例的電壓訊號。
本論文研究之目的,是利用準分子雷射加工機,配合特殊幾何形狀的光罩與工件旋轉,加工PZT壓電材料,製作出寬頻的圓錐形立體微探頭,再以一般商用的圓錐探頭作對照,檢測所製作之微型圓錐聲波感測器的性能。
本論文再以所製作之微型圓錐聲波感測器為元件,設計製作出表面聲波感測器,並利用所發展表面聲波感測器,進行各種非破壞性檢測的應用,包括裂縫量測、等向性材料及非等向性材料波速量測、材料內部應力量測,以了解表面聲波感測器的性能,與未來改進及發展的方向。
Abstract
The first objective of this thesis is to investigate the feasibility of using excimer laser micro-machining technique to fabricate small conical piezoelectric elements, and then to construct a miniature NBS conical transducer for acoustic emission measurements. A new machining method is developed which allows the excimer laser micro-machining workstation to fabricate small 3D conical-shape piezoelectric elements directly out of a polarized PZT plate. The machined PZT element is then used to construct a miniature conical transducer. Experimental tests show that the constructed miniature conical transducer is indeed a good acoustic emission sensor with a higher frequency bandwidth limit. Hence it is useful for high-frequency acoustic emission measurements and its size is greatly reduced in comparison to the conventional NBS conical transducer.
Furthermore, a new surface acoustic wave (SAW) transducer, which is also based on the machined conical PZT elements, has been constructed and tested. The transducer utilizes two PZT elements to form a surface wave transmitter/receiver pair, and hence works as a point-source/point-receiver surface wave transducer. The surface wave velocity can be accurately determined with a waveform comparison method. Several applications on non-destructive evaluation (NDE) using this new SAW transducer have been investigated. Which are, surface wave velocity measurements and characterization for anisotropic materials, depth determination of surface breaking cracks, and surface stress measurements based on acoustoelastic effects. For each one of the applications, experimental tests have been carried out and the results and comments will be addressed. Future works and improvements on these transducers are also discussed.
目錄
中文摘要Ⅰ
英文摘要Ⅲ
誌謝Ⅴ
目錄Ⅵ
附表目錄Ⅷ
附圖目錄Ⅸ
符號說明XI
第一章 緒論 1
1-1文獻回顧 1
1-2 微型聲波感測器及表面聲波感測器 3
第二章 準分子雷射精密加工微型聲波感測器5
2-1準分子雷射5
2-2實驗架構5
2-3 實驗原理7
2-4 實驗方法9
2-5 實驗結果11
第三章 比較微型聲波感測器與商用感測器14
3-1 體波波場測試實驗15
3-1-1 實驗架構 15
3-1-2 實驗結果 16
3-2 板波波場測試實驗18
3-2-1 實驗架構 18
3-2-2 實驗結果 19
第四章 表面聲波感測器製作22
4-1設計原理22
4-2製作過程23
4-3製作結果28
4-3-1測試架構28
4-3-2實驗測試結果32
第五章 表面波(Surface Acoustic Wave)波速量測35
5-1 等向性材料表面波波速計算35
5-2等向性材料表面波波速量測36
5-2-1 材料對感測組的共振頻率量測36
5-2-2材料表面波波速量測結果 40
5-3 非等向性材料表面波波速計算43
5-3-1 非等向性材料表面波波速計算流程43
5-3-2 非等向性材料表面波波速計算結果50
5-4非等向性材料表面波波速量測51
第六章 裂縫量測56
6-1實驗架構56
6-2試件準備58
6-3量測結果58
第七章 等向性材料於應力場作用時之表面波波速量測62
7-1實驗架構62
7-2試件準備64
7-3量測結果67
第八章 結論72
參考文獻 74
參考文獻
[1] T. M. Proctor Jr., Improved piezoelectric transducer for acoustic emission reception, J. Acoustic Soc. Am. 68(Suppl. 1) (1980) S68
[2] T. M. Proctor Jr., An improved piezoelectric acoustic emission transducer, J.
Acoustic Soc. Am. 71 (1982) 1163-1168.
[3] T. M. Proctor Jr., F. R. Breckenridge, Y. H. Pao, Transient wave in an elastic plate: theory and experiment compared, J. Acoustic Soc. Am. 74 (1983) 1905-1907.
[4] J. E. Michaels, Y. H. Pao, Determination of dynamic forces from wave motion measurements, ASME J. Appl. Mech. 53(1986) 61-68
[5] N. N. Hsu, C. H. Palmer, S. E. Fick, A point source/point receiver method for ultrasonic testing, in: Proceedings of the IEEE Ultrasonic Symposium, 1993, pp.291-295
[6] P. L. Liu, T. H. Song, T. T. Wu, Application of system identification to the absolute calibration of acoustic emission signals, ASME J. Sound Vib. 116 (1994) 562-566
[7] T. T. Wu, J. S. Fan, A new method for measuring in situ concrete elastic constants using horizontally polarized conical transducers, J. Acoustic Soc. Am. 101 (1997) 330-336.
[8] M. Greenspan, The NBS conical transducer: analysis, J. Acoustic Soc. Am. 81 (1987) 173-183.
[9] N. G. Basov, V. A. Danilychev, Y. M. Popov, and D. D. Khodkevich, Laser operating in the vacuum region of the spectrum by excitation of liquid xenon with an electron beam, J. of Experimental and Theoretical Physic Letters, vol. 12 (1970) 329
[10] S. Searles, G. Hart, Stimulated emission at 281.8 nm from XeBr, Applied Physics Letters, vol. 27 (1975) 243
[11] J. Brannon, Excimer Laser Ablation and Etching, Education Committee, American Vacuum Society (1993)
[12] H. K. Tonshoff, D. Hesse, J. Mommsen, Micromachining using excimer lasers, Ann. CIRP 42 (1993) 247-251
[13] L. M. Galantucci, F. Giusti, Excimer Laser cutting: experimental characterization and 3D numerical modeling for polyester resins, Ann. CIRP 47 (1998) 141-144.
[14] P. E. Dyer, D. M. Karnakis, P. H. Key, P. Monk, Excimer laser ablation for Micromachining: geometric effects, Appl. Surf. Sci. 96-98 (1996) 415-419.
[15] K. Zimmer, A. Braun, F. Bigl, Combination of different processing methods for the fabrication of 3D polymer structures by excimer laser machining, Appl. Surf. Sci. 154-155 (2000) 601-604
[16] A. Braun, K. Zimmer, B. Hosselbrath, J. Meinhardt, F. Bigl, R. Mehnert, Excimer Laser Micromachining and replication of 3D optical surface, Appl. Surf. Sci. 127-129 (1998) 315-321
[17] F. R. Breckenridge, Acoustic emission transducer calibration by means of the seismic surface pulse, J. Acoustic. Emission 1(1982) 87-94
[18] N. N. Hsu, Dynamic Green’s function of an infinite plate-A computer program, NBSIR 85-3234, National Bureau of Standards, Gaithersburg, MD, 1985.
[19] M. W. Godfrey, L. A. Mahmood, D. C. Emmony, An improve design of point contact transducer, NDT International. Vol. 19. No 2. April (1986) 91
[20] A. Briggs. Acoustic Microscopy, Oxford University Press, New York, 1992.
[21] G. A. D. Briggs, ed. Advances in Acoustic Microscopy, Plenum Press, New York, 1995.
[22] J. Krautkramer and H. Krautkramer. Ultrasonic Testing of Materials, 4th edn. Springer-Verlag, New York, 1990.
[23] N. N. Hsu, D. Xiang, S.E. Fick, and G. V. Blessing, Time and polarization resolved ultrasonic measurements using a lensless line-focus transducer, Proc. IEEE Ultrason. Symp. (1995) 867-871.
[24] D. Xiang, N. N. Nelson, and G. V. Blessing, The design, construction and application of a large aperture lens-less line-focus PVDF transducer, Ultrasonics 34 (6) (1996) 641-647.
[25] Y. C. Lee, Measurements of dispersion curves of leaky Lamb waves using a lens-less line-focus transducer, Ultrasonics, accepted for publication.
[26] Y. C. Lee, Measurements of multimode leaky Lamb waves propagating in metal sheets, Jpn. J. Appl. Phys. 40 (2001) 359-363.
[27] J. D. Achenbach, Wave Propagation in Elastic Solids, North-Holland Publishing Company.
[28] A. H. Nayfeh, Elastic wave reflection from liquid-anisotropic substrate interfaces, Wave Motion 14 (1991) 55-67
[29] A. H. Nayfeh, Wave Propagation in Layered anisotropic Media, Elsevier Science B.V.1995
[30] B. A. Auld, Acoustic Fields and waves in solids: volumeⅠ&Ⅱ, John Wiley & Sons
[31] A. Briggs, Advances in Acoustic Microscopy: volumeⅠ, Plenum Press 1994
[31] K. Y. Kim, T. Ohtani, A. R. Baker, W. Sachse, Determination of all Constanta of Orthotropic Plate Specimens from Group Velocity Data, Res. Nondestr. Eval. (1995) 7:13-29
[32] J. F. Chai, T. T. Wu, Determinations of anisotropic elastic constants using laser-generated surface waves, J. Acoustic Soc. Am. Vol. 95 June (1994) 3232-3241
[33] P. M. Yu, J. P. Wikswo Jr., Techniques for depth-selective, low-frequency eddy current analysis for SQUID-based nondestructive testing., J. Nondestr. Eval.1995;14(3):149-167.
[34] B. Lebrun, Y. Jayet, J. C. Baboux., Pulsed eddy current application to the detection of deep cracks., Mater. Eval.1995;53(11):1296-1300.
[35] R. Chajarieh, M. Saka, T. Sugawara, H. Abe, I. Komura, H. Sakamoto, NDE of multiple cracks on the surface of materials by means of the potential drop technique., NDT&E International 1994;27(3):143-150.
[36] K. Ikeda, M. Yoshimi, C. Miki, Electrical potential drop method for evaluating crack depth., Int. J. Fracture 1991; 47(1):25-38.
[37] J. Krautkramer, H. Krautkramer, Ultrasonic Testing of Materials, 4th ed. Berlin: Springer-Verlag, 1990.
[38] D. A. Mendelsohn, J. D. Achenbach, L. M. Keer, Scattering of elastic waves by a surface-breaking crack., Wave Motion 1980;2(3):277-292.
[39] Y. C. Angle, J. D. Achenbach., Reflection and transmission of obliquely incident Rayleigh waves by a surface-breaking crack., J. Acoust. Soc. Am. 1984;75:313-319.
[40] J. D. Achenbach, I. N. Komsky, Y. C. Lee, Y. C. Angel., Self-calibrating ultrasonic techni2que for crack depth measurement., J. Nondestr. Eval 1992;11(2):103-108.
[41] C. M. Scala, S. J. Bowles., Laser Ultrasonics for surface-crack depth measurement using transmitted near-field Rayleigh waves., In: Thompson DO, Chimenti DE, editors, Review of Progress in Quantitative Nondestructive Evaluation 19A. New York: American Institute of Physics, 2000. p.327-334.
[42] R. J. Hudgell, L. L. Morgan, R. F. Lumb., Non-destructive measurement of the depth of surface-breaking cracks using ultrasonic Rayleigh waves., Br. J. Non-destructive Testing1974;16(5):144-149.
[43] B. H. Lidington, M. G. Silk, Crack depth measurements using a single surface wave probe., Br. J. Non-destructive Testing1975;17(6):165-167.
[44] M. G. Silk, B. H. Lidington, Defect sizing using an ultrasonic time delay approach. ,Br. J. Non-destructive Testing1975;17(2):33-36.
[45] R. A. Toupin, B. Bernstein, Sound Wave in Deformed Perfectly Elastic Materials. Acoustoelastic Effect, J. Acoust. Soc. Am., 33, pp.216-225 (1961)
[46] Y. H. Pao, W. Sachse, H. Fukuoka, Acoustoelasticity and Ultrasonic Measurements of Residual Stresses, Physical Acoustics Vol. 17, Eds. Mason, W. P. and Thurston, R. N., Academic Press, New York, Ch.2, pp.61-143 (1984).
[47] Y. C. Lee, Jin O. Kim and J. D. Achenbach, Measurement of stresses by Line-focus acoustic Microscopy, J. Ultrasonics Vol 32 No 5 (1994) 359-365
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔