跳到主要內容

臺灣博碩士論文加值系統

(44.200.101.84) 您好!臺灣時間:2023/10/05 06:49
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:張敬鴻
研究生(外文):Ching-Hung Chang
論文名稱:複合阻水層之滲流率
論文名稱(外文):Leakage Rate of Composite Liners
指導教授:單信瑜單信瑜引用關係
指導教授(外文):Hsin-Yu Shan
學位類別:碩士
校院名稱:國立交通大學
系所名稱:土木工程系
學門:工程學門
學類:土木工程學類
論文種類:學術論文
論文出版年:2001
畢業學年度:89
語文別:中文
中文關鍵詞:阻水層地工止水膜
外文關鍵詞:linergeomembrane
相關次數:
  • 被引用被引用:4
  • 點閱點閱:215
  • 評分評分:
  • 下載下載:21
  • 收藏至我的研究室書目清單書目收藏:1
在地工止水膜產生破洞時的滲流行為中,地工止水膜和土壤介面之輸水率扮演著重要的角色。
以高嶺土作為實驗材料,用以代表黏土。實驗可變因素包括:水
頭、地工止水膜破洞面積、正向有效應力以及鋼珠的數目。我們以鋼
珠模擬現地土壤石子,以製造地工止水膜和高嶺土的不平整的接觸
面。在此研究裡,以有限元素程式(FEMWATER)配合試驗結果來
評估輸水率。網格建構時建立了一層虛擬的網格層以模擬地工止水膜
和高嶺土的空間。以試誤法讓FEMWATER所模擬出來的流量的結果
能和我們試驗時的流量的結果能夠相符合,藉以求出其輸水率。
當水頭、工止水膜破洞面積、鋼珠的數增多的時候,滲流量也增大,這是因為此時輸水率變大之故;但當正向應力增加時,滲流量將降低。而輸水率的關係顯示與滲流率關係相同。

The transmissivity of the interface plays an important role in the leakage behavior through the defects of geomembranes .
Kaolinite was used to perform the experiments to represent clay. The variables controlled factors in the experiment include hydraulic head, area of defects of geomembranes, effective stress on geomembranes, and number of steel balls. Steel balls were used to simulate the gravel in the subgrade soil to produce gap between the geomembrane and Kaolinite. In this research, a computer program based on finite element method, FEMWATER , is used to compute the transmissivity. A virtual layer is assumed to simulate the space between the geomembrane and Kaolinite . Transmissivity was found by using “trial and error” method to let the discharge rate computed by FEMWATER meet the discharge rate of lab test .
The results show that whenever hydraulic head, or area of defects of geomembranes, or number of steel balls increased, the leakage discharge also increased owing to the rise of transmissivity. Inaddition When effective stress on geomembranes increased, the leakage discharge decreased. Inaddition, the transmissivity displays the same relationship.

第一章 緒論………………………………………………………………1
1.1 研究背景…………………………………………………………1
1.2 研究目的…………………………………………………………1
1.3 研究方法…………………………………………………………2
第二章 相關理論與研究…………………………………………………3
 2.1 掩埋場組成相關機制……………………………………………3
2.1.1 掩埋場之組成……………………………………………….3
2.1.2 阻水層……………………………………………………….4
2.1.3 地工止水膜產生破洞的原因……………………………….5
2.1.4 廢水形成…………………………………………………….6
  2.2 地工止水膜相關理論與研究……………………………………7
2.2.1 輸水率…………………………………………………………7
2.2.2 二維空間假設地工止水膜和土壤之間的接觸面為完美接觸無
介面流的存在………………………………………….….8
2.2.3 三維情形下假設地工止水膜和地表土壤完美接觸的數值
模式………………………………………………………….10
2.2.4 三維情形下假設地工止水膜和地表土壤之間有介面流存在的
數值模式…………………………………………………….11
2.3 定水頭下地工止水膜之破洞滲流分析………………………….14
2.4 FEWATER之基本理論及前置處理系統GMS之簡介………………17
2.4.1 FEMWATER及GMS簡介…………………………………………17
第三章研究方法………………………………………………………19
3.1 研究方向………………………………………………………….19
3.2 實驗材料………………………………………………………….19
3.2.1 實驗土壤、地工止水膜、介質………………………………19
3.2.2 實驗液體………………………………………………………19
3.3 滲流實驗………………………………………………………….20
3.3.1滲流儀器………………………………………………………21
3.3.2 調壓裝置…………………………………………………….21
3.3.3 試驗程序…………………………………………………….22
3.3.4高嶺土滲流試驗步驟………………………………………..23
3.3.4.1 裝置滲流儀…………………………………….……….23
3.3.4.2 裝置土樣………………………………………………..24
3.3.4.3 進行滲流試驗…………………………………………..26
3.4 FEMWATER程式模擬…………………………………….…….….29
第四章 實驗結果與分析…………………………………………………34
4.0 摘要…………...…………………………………………………34
4.1 試驗所求之滲流率……………………………………………...34
4.2 FEMWATER所模擬之輸水率及配合公式之滲流率結果分析…...37
4.3 等勢能線……………………………………………………….…40
4.4高嶺土與地工止水膜之介面距離…………………………………40
4.5其他相關公式分析…………………………………………………41
第五章 結論與建議………………………………………………………71
5.1 前言……………………………………………………………..71
5.2 結論……………………………………………………………..71
5.3 建議……………………………………………………………..72

陳瑞和,「基層材料對地工造土毯導水度之影響」,國立交通大學,碩士論文,pp. 1-7,民國89年6月。
賴彥景,「序列滲流對地工皂土毯工程性質之影響」,國立交通大學,碩士論文,pp. 1-10,民國86年6月。
韓英信「地工止水膜產生破洞時的輸水率模式探討」,國立交通大學,碩士論文,民國89年6月。
Brown, K. W., Thomas, J. C., Lyhon, R. L., Jayawickrama, P., & Bahrt, S. C. (1987). “Quantification of Leakage Rates Through Holes in Landfill liners.” USEPA Report CR 810940, Cincinnati, USA, 147-150.
Faure, Y. H. Nappes etanches (1979). “debite et forme de`ecoulement en cas de fuite.” Thesis, University of Grenoble, France, 263-266. (in Franch)
Foose, G. J., Benson, C. H., and Edil, T. B. (2001). “Predicting Leakage through Composite Landfill Liners.” Journal of Geotechnical and Geoenviromental Engrg., ASCE ,127(6), 510-520.
Fukuoka, M. (1986). “Large Scale Permeability Tests for Gemembrane Subgrade System. ” Proceedings of the Third International Conference on Geotexitiles, Vienna, Balkema Publisher, Rotterdam, The Netherlands, 3 , 17-22.
Giroud, J. P. (1997). “Equations for Calculating the Rate of Liquid Migration Through Composite Liners due to Geomembrames Defects.” Geosynthetics International, 4 (3 & 4), 335-348.
Giroud, J. P., and Bonaparte, R. (1989). “Leakage Through Liners Constructed with Geomembranes-Part I. Geomembranes Liners.” Geotextiles and Geomembranes, 8, 27-67.
Giroud, J. P., and Bonaparte, R. (1989). “Leakage through Liners Constructed with Geomembranes-Part II. Composite Liners.” Geotextiles and Geomembranes, 8, 71-111.
Giroud, J. P., and Khire, M. V. (1997). “Liquid Migration through Defects in a Geomembrane Overlain and Underlain by Permeable Media.” Geosynthetics International, 4(3 & 4), 293-321.
Giroud, J. P., Rad, N. S., and Mckelvey, J. A. (1997). “Evaluation of the Surface Area of a GCL Hydrated by Leachate Migrating through Gemembrane Defects” Geosynthetics International, 4(3 & 4), 446-457.
Giroud, J. P., Soderman, K. L., Khire, M. v., and Badu-Tweneboah, K. (1998). “New Developments in Landfill Liner Leakage Evaluation.” Sixth International Conference on Geosynthetics, 1, 261-268.
Richardson, G. N., and Hase, W. G. (1999). “Design Considerations for Surface Impoundments.” Geotechnical Fabrics Report, 17(2), 18-19.
Rowe, R. k., Hsuan, Y. G., Lake, C. B., Sangam, P., Usher, S. (1998). “Evaluation of a Composite (Gemembrane/Clay) Liner for a Lagoon after 14 Years of Use.” Sixth International Conference on Geosynthetics, 1, 233-238.
Van Genuchten, M. Th. (1980). "A Closed Form Equation for Predicting the Hydraulic Conductivity of Unsaturated Soils." Soil Sci. Soc. Am. J., 44, 892-898.
Waton, J., Rahman, M., Casey, D., Picornell, M., and Sloyd (1997). “Leakage through Flaws in Geomembrane liners.” Journal of Geotechnical and Geoenviromental., ASCE ,123(6), 534-539.
Wilson-Fahmy, R.F., and Koerner, R.M. (1995). “Leakage Rate Through Holes in Geomembranes Overlying Geosynthethic Clay Liners.” Geosynthetics ’95 Conference Proceeding, 3, 655-668

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top