(3.232.129.123) 您好!臺灣時間:2021/03/04 18:07
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:宋德仁
研究生(外文):Der-Ren Song
論文名稱:沉砂池囚砂效率之研究
論文名稱(外文):Study on Efficiency of Settling Basin
指導教授:葉克家葉克家引用關係
指導教授(外文):Keh-Chia Yeh
學位類別:碩士
校院名稱:國立交通大學
系所名稱:土木工程系
學門:工程學門
學類:土木工程學類
論文種類:學術論文
論文出版年:2001
畢業學年度:89
語文別:中文
中文關鍵詞:
相關次數:
  • 被引用被引用:7
  • 點閱點閱:545
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:55
  • 收藏至我的研究室書目清單書目收藏:5
現行沉砂池規劃設計依水土保持技術規範為之,惜未考量其囚砂率之良窳與經濟效益;本研究目的除分析各種理論沉砂池經驗式之囚砂效率外,並謀求以水平二維動床數值模式來替代需耗費大量人力、物力及大型場地模型試驗之可行性,同時進行不同尺寸沉砂池之模擬,以瞭解不同長寬比與囚砂率間之關係,以供沉砂池設計之參考。
本研究首先收錄常用之理論沉砂池囚砂率經驗式如:Hazen模式、Camp & Dobbins模式、Vetter模式、Einstein模式、Chen模式、Sumer模式、Garde et al.模式及連與黃模式,並提供演算實例,可作為設計沉砂池之參考。由各種囚砂率經驗式比較分析得知,Hazen與Vetter所求得之囚砂率分別為各經驗式中之最大與最小者。
前述諸理論沉砂池囚砂率經驗式,並未考量沉砂池幾何形狀對流場之影響,是以在推估囚砂效率時,將有較大之誤差。故本研究進一步利用淤積實測資料率定後之水平二維動床數值模式,模擬不同幾何形狀之沉砂池案例,並探討其對沉淤效率之影響。模擬結果顯示沉砂池長寬比較小者,其流場變化較劇烈,淤積效率亦較差,若以較簡化之理論模式估算,無法反應其變化,故建議以水平二維動床數值模式進行模擬,方能獲致較正確之結果。
The current planning and design of settling basin is based on the Technical Code of Soil Conservancy. However, the trap efficiency and economic benefit of the settling basin is not fully considered. The purpose of this study is to analyze traditional empirical formulas, and to seek the possibility of using a 2-D depth-average mobile-bed model in replacement of physical model experiment which requires large amount of manpower, money, and space. Through simulations of various sizes of the settling basins, the relationship between the trap efficiency and the length-width ratio of the settling basin can be obtained, which can provide information for the design of the settling basins.
This study collects commonly used empirical formulas such as the Hazen model, Camp nad Dobbins model, Vetter model, Einstein model, Chen model, Summer model, Garde et al. model, and Lien and Huang model. In the meantime, this study provided an example for the design of settling basin by using above mentioned formulas. Comparison of the results shows that the trap efficiency by the Hazen and the Vetter models are respectively the largest and the smallest among these empirical formulas.
Because the empirical formulas do not consider the effect of the geometry of the settling basin on the flow field, the estimation of the trap efficiency then will cause larger error. In this study, a further step is the adoption of a 2-D depth-averaged mobile-bed model, which is calibrated by experimental data of an aggrading channel. The effects on the trap efficiency by several different geometries of the settling basins are investigated by the numerical modeling. Simulated results show that flow field has large variation for basins with small length-width ratios, and consequently results in small trap efficiency. This fact cannot be reflected by the conventional empirical formulas. Therefore, a 2-D depth-averaged model is recommended to obtain more accurate trap efficiency.
中文摘要i
英文摘要ii
謝誌iv
目錄v
表目錄viii
圖目錄ix
第一章 緒論1
第二章 現行沉砂池規劃設計作業6
2.1沉砂池規劃設計作業流程6
2.1.1概述6
2.1.2規劃設計作業流程圖6
2.2沉砂池設計規範7
2.2.1土壤沖蝕指數8
2.2.2土壤流失量8
2.2.3沉砂池容量9
第三章 理論沉砂池囚砂率分析11
3.1沉砂池理論11
3.1.1 Hazen模式11
3.1.2 Camp & Dobbins模式12
3.1.3 Vetter模式13
3.1.4 Einstein模式13
3.1.5 Chen模式14
3.1.6 Sumer模式14
3.1.7 Garde et al.模式15
3.1.8連與黃模式15
3.2各種囚砂率經驗式之比較16
第四章 數值模式簡介20
4.1水流控制方程式20
4.2輸砂控制方程式22
4.3輸砂輔助關係式23
4.3.1河床載通量(bedload flux)23
4.3.2懸浮載源 (S)25
4.3.3作用層厚度 ( )26
4.3.4作用層源( )27
4.4模式之率定28
4.4.1模式演算參數設定28
4.4.2模式率定結果30
第五章 案例模擬31
5.1設計案例31
5.2模擬結果32
5.2.1流場分佈情形32
5.2.2 底床淤積分佈情形34
5.2.3 囚砂率比較37
第六章 結論與建議38
6.1結論38
6.2建議39
參考文獻40
附表43
附圖45
1. Adams, E.W., and Rodi, W. (1990), “Modeling flow and mixing in sedimentation tanks.” Journal of Hydraulic Engineering, 116(7), 895-913.
2. Bennett, J.P., and Nordin, C.F. (1977), “Simulation of sediment transport and armoring.” Hydrological Sciences Bulletin, XXII, 4(12), 555-569.
3. Borah, D.K., Alonso, C.V., and Prasad, S.H. (1982), "Routing graded sediments in streams: formulations." J. Hydr. Division, ASCE, 108(12), 1486-1505.
4. Camp, T.R., (1946), “Discussion on: effect of turbulence on sedimentation.” Trans., ASCE, 109, 660-666.
5. Chen, C,-N. (1975), “Design of sediment retension basins.” Proc. National Symp. On Urban Hydrology and Sediment Control, Univ. of Kentucky, Lexington, U.S.A.
6. Dobbins, W. E. (1944), “Effect of turbulence on sedimentation.” Trans., ASCE, 109, 629-653.
7. Einstein, H. A. (1968), “Deposition of suspended particles in a gravel bed.” Journal of Hydraulics Division, ASCE, 94(5), 354-362.
8. Grade, R,J., Raju, K.G. R., and Sujudi, A.W. R. (1990), “Design of settling basins.” Journal of Hydraulic Research, 208(1), 81-91.
9. Hazen, A. (1904), “On sedimentation.” Trans., ASCE, 53, 45-71.
10. Karim, M. F., Holly, F. M., Jr., and Yang, J. C. (1987), “IALLUVIAL: Numerical Simulation of Mobil-Bed Rivers: Part I, Theoretical and Numerical Principles”, Iowa Institute of Hydraulic Research Research Report No. 309, Univ. of Iowa, Iowa City, Iowa.
11.Lin, B. (1984), "Current study of unsteady transport of sediment in China." Proceedings of Japan-China Bi-Lateral Seminar on River Hydraulics and Engineering Experience, Tokyo-Kyoto-Sapporo, 337-342.
12.Olsen, N. R. B., and Skoglund, M. (1994), “Three-dimensional numerical modeling of water and sediment flow in a sand trap.” Journal of Hydraulic Research, 32(6), 833-843.
13.Pemberton, E. L., and Lara, J. M. (1971), “A procedure to determine sediment deposition in a settling basin.” Bureau of Reclamation, U.S. Department of the Interior.
14.Spasojevic, M., and Holly, F. M., Jr. (1990), “2-D bed evolution in natural watercourses -- new simulation approach.” Journal of Waterway, Port, Coastal and Ocean Engineering, ASCE, 116(4), 425-433.
15.Sumer, M. S. (1977), “Settlement of solid particles in open channel flow.” Journal of Hydraulics Division, ASCE, 103(11), 1323-1337.
16.Suryanarayana, B. (1969), "Mechanics of degradation and aggradation in a laboratory flume." thesis presented to Colorado State University, Fort Collins, Colorado, 1969.
17.Van Rijn, L. C. (1984a), “Sediment transport, part I:bed load transport.” Journal of Hydraulic Engineering, ASCE, 100(10), 1431-1456.
18.Van Rijn, L. C. (1984b), “Sediment transport, Part II:suspended load transport.” Journal of Hydraulic Engineering, 10(11), 1613-1641.
19.Vetter, C. P. (1940), “Technical aspects of the silt problem on the Colorado River.” Civil Engineering, 10(11), 698-701.
20.Zhou, S., and McCorquodale, J. A. (1992), “Modeling of rectangular settling tanks.” Journal of Hydraulic Engineering, 118(10), 1391-1405.
21.俞維昇(1991),「水庫沉運動特性之研究」, 國立臺灣大學土木工程研究所博士論文。
22.俞維昇(1993),「沉砂池囚砂率之研究」,中華水土保持學報,24(2)。
23.俞維昇、許少華、宋長虹(1995),「沉砂池囚砂率計算方法之研究」,臺灣水利報,43(3),51-57。
24.王茂興、韓宇中(1997),「雨水滯流池底床沖淤及攔砂效率之研究」,中興工程,54,27-36。
25.陳樹群、巫仲明、張三郎(1997),「連續性沉砂池囚砂率之研究」,中華水土保持學報,28(4),271-278。
26.連惠邦、黃俊傑(1997),「坡地沉砂池之設計模式」,中華水土保持學報,28(4),289-297。
27.葉克家、趙勝裕、許至璁、林恩添(2000),「水平二維動床模式之應用研究(一)」,中興工程顧問社研究計畫報告。
28.高肇藩(1974),「衛生工程,給水(自來水)篇」,397。
29.台灣大學水工試驗所(1989),「台北市雨水下水道規劃手冊」,168-173。
30.巨廷工程顧問公司(1991),「新園地區灌溉系統改善規劃報告」,54-56。
31.台灣省水利局(1978),「灌溉排水工程設計」,168-173。
32.張玉田 (1976),「水力發電學」,105。
33.行政院農業委員會及臺灣省水土保持局 (1992),「水土保持手冊」,2-116~2-118。
34. 行政院農業委員會 (2000),「水土保持技術規範」。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔