跳到主要內容

臺灣博碩士論文加值系統

(44.210.99.209) 您好!臺灣時間:2024/04/15 18:11
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:蔡東霖
研究生(外文):Tung-Lin Tsai
論文名稱:區域性地下水超抽導致地層下陷模式之發展與應用
論文名稱(外文):The Development and Application of Model of Regional Landsubsidence due to Groundwater Overpumping
指導教授:楊錦釧楊錦釧引用關係黃良雄黃良雄引用關係
指導教授(外文):Jinn-Chuang YangLiang-Hsiung Huang
學位類別:博士
校院名稱:國立交通大學
系所名稱:土木工程系
學門:工程學門
學類:土木工程學類
論文種類:學術論文
論文出版年:2001
畢業學年度:89
語文別:中文
論文頁數:147
中文關鍵詞:一維非耦合地層下陷模式三維耦合地層下陷模式垂向積分孔隙水壓連續水流通量連續二次多項式函數有限解析法
外文關鍵詞:one-dimensional uncoupled landsubsidence modelthree-dimensional coupled landsubsidence modelvertical integrationthe continuity of pore pressurethe continuity of fluxquadratic polynomial functionfinite analytic method
相關次數:
  • 被引用被引用:30
  • 點閱點閱:641
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:2
本研究之目的即在於發展並應用一套準確且高效率的地層下陷預測數值計算模式,以作為利用與管理地下水資源的重要工具。本研究首先根據飽和地下水及土體變形皆三維之耦合地層下陷控制方程式的量階分析結果,提出當地下水流流況為類似水平流或垂直流時,適用土體變形一維之非耦合地層下陷理論的重要結論。依據此結論,本研究以飽和地下水流方程式三維,及土體變形方程式一維之非耦合模式,模擬區域性地下水超抽引致之地層下陷,再結合以三維耦合模式,計算局部嚴重地層下陷區域。
對於一維非耦合模式之地下水流計算,提出分層三維水流之概念。亦即首先依據土壤之導水性質,將土體作垂直分層或虛擬分層,在假設每個土層之孔隙水壓於垂向深度上皆為二次多項式函數分布下,引用分層垂向積分技巧,層與層間之垂直介面邊界,再以孔隙水壓及水流通量連續之條件加以連接。結果顯示,本研究提出之分層三維水流概念,不但能模擬阻水層與含水層之水流分別為垂直流以及水平流的擬三維水流現象,更因為沒有傳統擬三維水流概念之限制,也可以模擬出僅能使用三維水流模式才能模擬之三維水流現象,如抽水井附近或複雜土層分布之地下水流況,並且能保有傳統擬三維水流概念比三維水流模式計算效率高之特點。
三維耦合地層下陷模式之建立亦引用分層垂向積分概念,並且假設孔隙水壓及水平與垂向位移,在每個土層之垂向深度方向上皆為二次多項式函數分布。而層與層間之介面邊界,與一維非耦合模式相同,除了需滿足流體之孔隙水壓與水流通量連續外,因為多加入土體靜力平衡方程式之求解,所以亦需滿足土體之位移與有效應力連續。此外,因為土壤之參數可能差異甚大,為了避免可能發生之計算不穩定,研究中以無因次化控制方程式來建立數值模式。
研究中,一維非耦合與三維耦合地層下陷模式,皆引用具有局部解析解以及無條件穩定收斂,並可以在卡式座標下處理不規則邊界等多項特點的有限解析法來建立。模式驗證完後,分別將其應用於濁水溪沖積扇之區域性地層下陷模擬,以及雲林縣口湖會水附近嚴重下陷地區之三維土體變形計算。模擬結果顯示,分層地下水位與地層下陷量之模擬結果,其量階與趨勢大致與實測資料相吻合。
In this study an accurate and efficient landsubsidence model due to groundwater overpumping which is a basic tool for application and management of groundwater resources has been developed and applied to practical case. First of all the analysis of order of magnitude for governing equations of three-dimensional coupled landsubsidence model shows that one-dimensional uncouple landsubsidence model is applicable when the flow pattern of groundwater is approximately horizontal or vertical. Based on the results, the concept of one-dimensional uncoupled model for modeling regional landsubsidence is proposed. The local severe landsubsidence can be zoomed and solved with a combination of three-dimensional coupled model.
In the one-dimensional uncoupled landsubsidence model, the concept of layered three-dimensional groundwater flow simulation is proposed. The governing equation for every layer is vertically integrated with an assumption that the pore pressure in the vertical direction is assumed to satisfy quadratic polynomial function. At the interface between two layers the continuity of pore pressure and flux has to be satisfied. The layered three-dimensional flow concept is able to efficiently simulate the fully three-dimensional flow pattern and the quasi three-dimensional flow pattern in which the groundwater flow of the aquifers and aquitard are horizontal and vertical, respectively.
The proposed three-dimensional coupled landsubsidence model is developed by using the technique of vertical integration as well. The pore pressure and displacements in the horizontal and vertical directions for every layer are assumed to satisfy quadratic polynomial function. Like the one-dimensional uncoupled model, at the interface between two layers the continuity not only of pore pressure and flux but also of displacement and stress has to be satisfied. In addition, to avoid the computational instability due to the large differences of soil parameters, the governing equations are non-dimensionalized.
Both one-dimensional uncoupled and three-dimensional coupled models are developed by using finite analytic method which is locally analytic and unconditionally stable and can deal with irregular boundary problems with the Cartesian coordinate system. After the two models are verified, they are applied to Tzuo-Suei River Basin for regional simulation and Kou-Hu for local modeling, respectively. The simulated results agree with the measured data quite well.
封面
志謝
摘要
ABSTRACT
目錄
表錄
圖錄
符號說明
第一章緒論
1.1研究動機與目的
1.2文獻回顧
1.3研究方法與步驟
1.4章節介紹
第二章理論基礎
2.1三維耦合地層下陷控制方程式
2.1.1水流控制方程式
2.1.2土體靜力平衡方程式
2.2一維非耦合地層下陷理論適用時機
第三章一維非耦合地層下陷模式之建立
3.1分層三維地下水流計算
3.1.1水流控制方程式
3.1.2初始條件
3.1.3邊界條件
3.1.4內插開頭函數
3.2土體位移代數式
3.3總結一維非耦合地層下陷控制方程式
3.4有限解析法簡介
3.5離散方程式與求解步驟
第四章三維耦合地層下陷模式之建立
4.1分層三維耦合地層下陷控制方程式
4.1.1控制方程式
4.1.2邊界條件
4.1.3初始條件
4.2無因次分層三維耦合地層下掐控制方程式
第五章模式之驗證
5.1一維非耦合地層下陷模式之驗證
5.1.1拘限含水層完全貫穿井抽水測試案例
5.1.2拘限含水層完全貫穿單井抽水測試案例
5.1.3多含水層系統測試案例
5.1.4不連續土層分佈測試案例
5.1.5非拘限含 水層部分貫穿單井抽水測試案例
5.2三維耦合地層下陷模式之驗證
5.2.1半無限空間拘限含水層單水井抽水測試案例
5.2.2半無限空間穩態點源抽水測試案例
5.2.3半無限空間非拘限含水層單井抽水測試案例
第六章濁水溪沖積扇之地層下陷模擬
6.1區域概述
6.2輸入資料之 集與處理
6.3區域一維非耦合地層下陷模擬結果
6.4局部三維耦合地層下陷類比結果
第七章結論與建議
7.1結論
7.2建議
參考文獻
作者簡介
李德河、紀雲曜、林宏明,’’地層下陷區土壤物理性與力學行為之研究’,經濟
部水資源局八十五年度地下水觀站網暨地層下陷防治計畫成果發表會成果
報告集,pp.183-199,民國86年。
呂志宗、杜富麗,”雲林縣口湖地區及屏東林邊地區地盤下陷之調查研究”,工業技術研究院能資與資源研究報告,附錄C,民國81年。
柳志錫、林明煌、杜富麗,”台灣雲林沿海地區地盤下陷之特性研究”,地下水調查分析吉保育管理研討會,pp. 569-581,民國81年。
施清吉,”地盤下陷之漸近解”,中國農業工程學報,29卷,第二期,pp. 13-22,民國72年。
耿承孝,”地下水變化與地層下陷相關性之研究”,國立台灣大學碩士論文,民國89年。
盛若磐,”抽取地下水導致地表下陷之簡便估計法”,行政院農委會,78農建-7.1- 林-31(5) 補助計畫。
曹以松,”台北盆地過度抽取地下水引起之地層沉陷及其補救方法”,台灣水利,17卷,第一期,民國58年。
張良正、龔誠山,區域性地下水觀測站網檢討(II)-濁水溪沖積扇觀測站網佈井及觀測頻率檢討,經濟部水資源局,民國85年。
廖日昇、李林少華、柳志錫、廖建順、林明煌,”北港沿海地區的地盤下陷及地
下水污染之調查及研究”,工研院能礦所地層下陷研討會論文集,pp.129-
216,民國79年6月。
歐陽湘、柳志錫、杜富麗、湛凱英,”八十五年度地層下陷監測調查研究”, 經
濟部水資源局八十五年度地下水觀站網暨地層下陷防治計畫成果發表會成
果報告集,pp.35-53,民國86年。
雲林縣政府,”雲林縣統計要覽”,雲林縣政府,民國82年。
經濟部中央地調所,”台灣地區地下水觀測網第一期計畫-八十一,八十二,八十三年濁水溪沖積扇水文地質調查” ,民國84年。
Barron, B. S., Trans, A.S.C.E. 133, pp718, 1948。
Bear, J., and Corapcioglu, M.Y., “Mathmatical Model for Regional Land Subsidence
due to Pumping. I. Integrated Aquifer Subsidence Equations based on Vertical
Displacement only “, W.R.R. 17, pp938-947, 1981a。
Bear, J.and Corapcioglu, M.Y., “Mathmatical Model for Regional Land Subsidence due to Pumping. II. Integrated Aquifer Subsidence Equations based on Vertical and Horizontal Displacement “, W.R.R. 17 pp947-958, 1981b。
Biot, M. A., “Genernal Theory of Three Dimensional Consolidation”, Journal of Applied Physics, 12, pp.155-164, 1941。
Biot, M. A., “Theory of Elasticity and Consolidation for a Porous Anisotropic Solid”, Journal of Applied Physics, 26, pp.182-183, 1955。
Booker, J. R., and Carter, J. P., “Elastic Consolidation Around A Point Sink Embedded in a Half-Space with Anisotropic Permeability”, Int. J. Numer. Anal. Method. Geomech., 11, pp.61-77, 1987。
Bredehoef, J.D. and G.F. Pinder, “Digital Analysis of Areal Flow in Multiaquifer Groundwater Systems: A Quasi Three-Dimensional Model”, W.R.R. 6, pp.883-888, 1970。
Chen, C. J., and Chen, H.C., “Finite Analytic Numerical Method for Unsteady Two-Dimensional Naiver-Stokes equation”, Journal of Computation Physics, 53, pp.209-226, 1984。
Chen, C. J., Naseri-Neshat, H., and Ho, K. S., “Finite Analytic Numerical Solution of Heat Transfer in Two-Dimensional Cavity Flow”, J. Nume. Heat Transfer, 4, pp.179-197, 1981。
Chen, C. J., and Yoon, Y. H., “Finite Analytic Numerical Solution of Axi-Symmertic Navier-Stokes and Energy Equations”, J. Heat Transfer, 105, pp.639-645, 1983。
Chen, C. J., Bravo, R. H., and Xu, Z., “Analysis of Finite Analytical Discretization of Incompressible Three-Dimensional Navier-Stokes Equations”, Computational Techniques and Numerical Heat Transfer on PCs and Wrokstations, 23, pp. 117-127, 1991。
Chorley, D. W., and Frind, E. O., “An Iterative Quasi Three Dimensional Finite Model for Heterogeneous Multi-Aquifer Systems”, W.R.R. 14, pp.943-952, 1978。
Cooper, H. H., Jr., “The Equation of Groundwater Flow in Fixed and Deforming Coordinates”, J. Geophys. Res., pp.4785-4790, 1966。
Corapcioglu, M.Y. and Bear, J., “A Mathmatical Model for Regional Land Subsidence due to Pumping. III. Integrated Equations for Pheratic Aquifer “, W.R.R. 19, pp895-908, 1983。
Corapcioglu, M. Y. and Brutsaert, W., “Viscoelastic Aquifer Model Applied to Subsidence Due to Pumping” , W. R.R. 13, pp.597-604, 1977。
Desau, C. S., and Siriwardane, T. H. J., “Subsidence due to Consolidation Including Non-Linear Behavior”, edited by S. K. Saxena, ASCE, pp.500-515, 1979。
Fallou, S. N., Mei, C.C., and Lee, C. K., “Subsidence due to Pumping from Layered Soil-A Pertubation Theory” , Int. J. Numer. Anal. Methods. Geomech., 16, pp.157-187, 1992。
Fuller, M. S., “Summary of Controlling Factors of Artesian Flows”, U.S. Geological Survey Bulletin, pp.319, 1908.
Gabrysch, R.K., “Land Surface Subsidence in the Houston-Galveston Region, Texas, in Tision”, Inter. Assoc. Sci. Hydrology, pub. 88, pp.43-54, 1969。
Gambolati, G. and Freeze, R. A., “Mathematical Simulation of the Subsidence of Venice I Theory”, W.R.R. 9, pp.721-733, 1973。
Gambolati, G. and Freeze, R. A., “Mathematical Simulation of the Subsidence of Venice II Result”, W.R.R. 10, pp.563-577, 1974。
Gambolati, G., Ricceri, G., Bertoni, W., Brighenti, G., and Vuillermin, E., “Mathematical Simulation of Subsidence of Ravenna”, W.R.R. 27, pp.2899-2918, 1991。
Ghaboussi, J., and Wilson, E. L., “Flow of Compressible Fluid in Porous Elastic Media”, International Journal for Numerical Methods in Engineering, 5, pp.419-441, 1973。
Gibbs, H. J., “A Laboratory Testing Study of Land Subsidence Pro.”, The First Pan American Conf. Soil Mech. And Foundation Eng. Mexico Clay, 1 pp.13-39,1950。
Gibbson, R. E., England, G. L., and Hussey, M. J. L., “The Theory of One Dimensional Consolidation of Saturated Clays. I Finite Nonlinear Consolidation Of Thick Homogeneous Layer”, Geotechnique, 117, pp.1-273, 1967。
Gupta, S. K., Cole, C. R., and Pinder, G. F., “ A Finite-Element Three-Dimensional Groundwater (FE3DGW) Model for a Multiaquifer System”, W.R.R. 20, PP.553-563, 1984。
Hantush, M.S., “Modification of the theory of Leaky Aquifer”, J. Geophys. Res., 65(11), pp.3713-3725, 1960。
Hantush, M. S. “Aquifer Tests on Partially Penetrating Well”, Journal of Hydraulic Div., 5, pp.171-195, 1961。
Helm, D.C., “One Dimensional Simulation of Aquifer System Compaction Near Pixey California, 1. Constant Parameter”, W.R.R. 11, pp465-478, 1975。
Helm, D.C., “One Dimensional Simulation of Aquifer System Compaction Near Pixey California, 2. Stress-Dependent Parameter”, W.R.R. 11, pp.465-478, 1976。
Hwang, J. C., Chen, C. J., Sheikhoslami, M. and Panigrahi, B. K., “Finite Analytic Numerical Solution for Two-Dimensional Groundwater Solute Transport”, W.R.R. 21, pp.1354-1366,1985。
Jacob, C. E., “The Flow of Water in the Elastic Artesian Aquifer”, Eos Trans. AGU, 21, pp.574-586, 1940。
Jacob, C. E., “Flow of Ground-Water”, in Engineering Hydraulics, edited by H. Rouse, John Wiley, New York, pp.321-386, 1950。
Koijc, M., and Cheatham, Jr. J. B., “Theory of Plasticity of Porous Media with Fluid Flow”, Soc. Pet. Eng., 14, pp.263-270, 1974。
Lewis, R.W., and B.A. Schrefler, B. A., “A fully Coupled Consolidation Model of the Subsidence of Venice”, W. R.R. 14, pp.223-230, 1978。
Lewis, R. W., and Schrefler, B. A., “ Coupling versus Uncoupling in Soil Consolidation”, Int. J.Numer. Anal. Methods Geomech., 15, pp.533-548, 1991。
Lu, R. H., and Yeh, H.D., “Considering the Effect of Body Force Regional Land Displacement”, Int. J. Numer. Anal. Method. Geomech., 18, pp.145-160, 1994。
Mei, C. C., “Gravity Effect in Consolidation of Layer Soft Soil”, Journal of Engineering Mechanics, 111, pp.1038-1047, 1985。
Mishra, S. K., Singh, R.P., and Chandra, S., “Prediction of Subsidence in the Indo-gangetic basin carried by groundwater withdrawal”, Engineering Geology 33, pp.227-239, 1993。
Narasimhan, T. N., and Witherspoon, P.A., “Numerical Model for Saturated- Unsaturated Flow in Deformable Porous Media, I Theory”, W.R.R. 13, pp.657-664, 1977。
Neuman, S. P., Preller, C., and Narasimhan, T.N., “Adaptive Explicit-Implicit Quasi Three-Dimensional Finite Element Model of Flow and Subsidence in Multiaquifer Systems”, W.R.R.18, pp.1151-1561, 1982。
Neuman, S.P., and Witherspoon, P. A., “theory of flow in a confined two-aquifer system ”, W.R.R. 5, pp.803-816, 1969。
Polubarinova-Kochina, P. Ya., The Theory of Groundwater Movement, 631pp., Prinction University Press, Princeton. N. J. 1962。
Rendulic, L., Wasserwirtsch u. Technik 2, pp250, 1935。
Runesson, K., Tagnofors, H., and Wiberg, N. E., “Finite Element Analysis of Groundwater Flow and Settlement in Aquifer Confined Clay”, edited by C. A. Brebbia, W. C. Grat and G. F. Pinder, London, pp.249-169, 1978。
Safai, N. M., and Pinder, G. F., “Vertical and Horizontal Land Deformation in a Desaturating Porous Medium”, Advances in Water Resources, 2, pp.19-26, 1979。
Safai, N. M., and Pinder, G. F., “Vertical and Horizontal Land Deformation due to Water Withdraw”, Int. J. Numer. Anal. Methods Geomech., 4, pp132-142, 1980。
Schatz, J.F., P.W. Kasameyer, J.A. Cheney, “ A Method of Using Porosity Measurements to Place to Upper Bound on Geothermal Reservior Compaction”, in Second International Well Testing Symp. Proc. Lawrence Berkeley Laboratory, Berkeley, pp.90-94, 1978。
Tarn, J.Q., and Lu, C.C., “Analysis of Subsidence due to a Point Sink in an Anisotropic Porous Elastic Half Space”, Int. J. Numer. Anal. Method. Geomech., 15, pp573-592, 1991。
Theis, C. V., “The Significance and Nature of the Cone of Dispersion in Ground- Water Bodies”, Econ. Geo., 33, pp.889-920, 1938。
Terzaghi, K., “Erdbaumechnic Auf Bodenphysikalisher Grundlage”, Franz Deuticke, Vienna, 1925。
Terzaghi, K., “Theoretical Soil Mechanics”, New York, pp.270, 1943。
Tsai, W. F., and Chen, C. J., “Unsteady Finite-Analytic Method for Solute Transport in Ground-Water Flow”, Journal of Engineering Mechanics, 121, pp.230-243, 1995。
Tsai, W. F., Chen, C. J., and Tien, H. C., “Finite Analytic Numerical Solutions for Unsaturated Flow with Irregular Boundaries”, Journal of Hydraulic Engineering, 119, pp.1274-1298, 1993。
Vega, G. A., Yamamoto, S., “Techniques for Prediction of Subsidence”, Guide Book to Studies of Land Subsidence due to Groundwater Withdraw, pp.205-216, 1984。
Verruijt, A., “Elastic Storage of Aquifers in Flow Through Porous Media”, edited by R. J. M. Dewiest, Academic, New York, pp.331-376, 1969。
Wadachi, K., “Ground Sinking in West Osaka”, Report Disaster Prevention Research Institute, No.3, 1940。
Yeh, H. D., Lu, R. H., and Yeh, G. T., “Finite Element Modeling for Land Displacements Due to Pumping”, Int. J. Numer. Anal. Method. Geomech., 19, pp.573-592, 1995。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top